Skip to main content
Log in

Photovoltaic performance of TiO2 using natural sensitizer extracted from Phyllanthus Reticulatus

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Phyllanthus reticulatus, a natural sensitizer has been extracted from Karunelli fruit for the fabrication of TiO2 based DSSCs. The extracted dye shows the visible light optical absorption at a wavelength of around 520 nm. The presence of anthocyanin in the dye extract has been identified by the functional molecular groups such as intermolecular –OH bond, conjugate C=O stretching vibrations using FTIR. A commercial P25 TiO2 anatase powder has been employed for the fabrication of photoanode on fluorine doped tin oxide (FTO) substrate using Doctor-blade technique. The Platinum (Pt) counter electrode has been prepared using electron beam evaporation technique with a thickness of ~200 nm. To measure the photoconversion efficiency of the stacked DSSCs, the electrodes are assembled into a cell module and illuminated by a light source simulating AM 1.5 with a light intensity of 100 mW/cm2. The freshly prepared sensitizer (P. reticulatus pH ~5.5) exhibits the photo-conversion efficiency of 0.19%, while decreasing the pH of the sensitizer (pH ~1.0) enhances the photoconversion efficiency to six times (0.69%) higher than that of fresh one.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. A. Yella, H.W. Lee, H.N. Tsao, C. Yi, A.K. Chandiran, M.K. Nazeerudin, E.W.G. Diau, C.Y. Yeh, S.M. Zakkeeruddin, M. Gratzel, Porphyrin-Sensitized solar cells with cobalt(II/III)—based redox electrolyte exceed 12 percent efficiency. Science 334, 629–634 (2011)

    CAS  Google Scholar 

  2. O’ Brian, M. Regan, Grätzel, A low-cost high efficiency solar cell based on dye- sensitized colloidal TiO2 films. Nature 353, 737 (1991)

    Google Scholar 

  3. M. Ye, X. Wen, M. Wang, J. Iocozzia, N. Zhang, C. Lin, Z. Lin, Recent advances in dye- sensitized solar cells: from photoanodes, sensitizers and electrolytes to counter electrodes. Mater. Today 18, 155–162 (2015)

    CAS  Google Scholar 

  4. M.R. Narayan, Review: dye sensitized solar cells based on natural photosensitizers. Renew. Sustain. Energy Rev. 16, 208–215 (2012)

    CAS  Google Scholar 

  5. Q. Yu, Y. Wang, Z. Yi, N. Zu, J. Zhang, P. Wang, High-efficiency dye-sensitized solar cells: the influence of lithium ions on exciton dissociation, charge recombination and surface states. ACS Nano 4, 6032 (2010)

    CAS  Google Scholar 

  6. S.K. Park, Y.S. Han, Efficient dye-sensitized solar cells with surface-modified photo electrodes. Sol. Energy 110, 260–267 (2014)

    CAS  Google Scholar 

  7. S. Mathew, A. Yella, P. Gao, R. Humphry-Baker, B.F.E. Curchod, N. Ashari-Astani, I. Tavernelli, U. Rothlisberger, K. Nazeeruddin, M. Grätzel, Nat. Chem. 6, 242–247 (2014)

    CAS  Google Scholar 

  8. Y. Amao, T. Komori, Bio-photovoltaic conversion device using chlorine-e6 derived from chlorophyll from spirulina adsorbed on a nanocrystalline TiO2 film electrode. Biosens. Bioelectron. 19(8), 843–847 (2004)

    CAS  Google Scholar 

  9. L. Ying, S. Ku, S. Chen, M.A. Ali, F.M. Alhemaid, Photo electrochemistry for cabbage extract as natural dye to develop a dye-sensitized solar cells. Int. J. Electrochem. Sci. 8(1), 1237–1245 (2013)

    Google Scholar 

  10. S.H. El-Ghamri, T.M. El-Agez, S.A. Taya, M.S. Abdel-Latif, A.Y. Batniji, Dye-sensitized solar cells with natural dyes extracted from plant seeds. Mater. Sci. Pol. 32(4), 547–554 (2014)

    CAS  Google Scholar 

  11. H. Chang, H.M. Wu, T.L. Chen, K.D. Huang, C.S. Jwo, Y.J. Lo, Dye-sensitized solar cell using natural dyes extracted from Spinach and Ipomoea. J. Alloys Compd. 495(2), 606–610 (2010)

    CAS  Google Scholar 

  12. N.M. Gomez-Ortız, I.A. Vazquez-Maldonado, A.R. Perez-Espadas, G.J. MenaRejon, J.A. Azamar-Barrios, G. Oskam, Dye-sensitized solar cells With natural dyes extracted from Achiote seeds. Sol. Energy Mater. Sol. Cells 94(1), 40–44 (2010)

    Google Scholar 

  13. S.A. Agarkar, P.R. Kulkarni, V.V. Dhas, A.A. Chinchansure, P. Hazra, S.P. Joshi, S.B. Ogale, Isobutrin from Butea monosperma (flame of the forest): a promising new natural sensitizer belonging to chalcone class. ACS Appl. Mater. Interfaces 3(7), 2440–2444 (2011)

    CAS  Google Scholar 

  14. K. Park, T. Kim, S. Han, H. Ko, S. Lee, Y. Song, J. Kim, J. Lee, Light harvesting over a wide range of wavelength using natural dyes of Gardenia and Cochineal for dye-sensitized solar cells. Spectrochim. Acta Part A 128(7), 868–873 (2014)

    CAS  Google Scholar 

  15. S. Hao, J. Wu, Y. Huang, J. Lin, Natural dyes as photosensitizers for dye-sensitized solar cells. Sol. Energy 80(2), 209–214 (2006)

    CAS  Google Scholar 

  16. S. Furukawa, H. Iino, T. Iwamoto, K. Kukita, S. Yamauchi, Characteristics of dye-sensitized solar cells using natural dye. Thin Solid Films 518(2), 526–529 (2009)

    CAS  Google Scholar 

  17. K.V. Hemalatha, S.N. Karthick, C.J. Raj, N.Y. Hong, S.K. Kim, J.H. Kim, Performance of Kerria japonica and Rosa chinensis flower dyes as sensitizers for dye-sensitized solar cells. Spectrochim. Acta Part. A 96(10), 305–309 (2012)

    CAS  Google Scholar 

  18. A.C. Nwanya, P.E. Ugwuoke, P.M. Ejikeme, O.U. Oparaku, F.I. Ezema, Jathropha curcas and Citrus aurantium leaves dye extract for use in dye sensitized solar cell with TiO2 films. Int. J. Electrochem. Sci. 7, 11219–11235 (2012)

    CAS  Google Scholar 

  19. S. Ananth, P. Vivek, T. Arumanayagam, P. Murugakoothan, Natural dye extract of Lawsonia Inermis seed as photo sensitizer for titanium dioxide based dye sensitized solar cells. Spectrochim. Acta Part. A 128(7) 420–426 (2014)

    CAS  Google Scholar 

  20. A.K.K. Kyaw, X.W. Sun, J.L. Zhao, J.X. Wang, D.W. Zhao, X.F. Wei, X.W. Liu, H.V. Demir, T. Wu, Top-illuminated dye-sensitized solar cells with a room-temperature-processed ZnO photoanode on metal substrates and a Pt-coated Ga doped ZnO counter electrode. J. Phys. D 44(4), 045102 (2011)

    Google Scholar 

  21. S. Hao, J. Wu, L. Fan, Y. Huang, J. Lin, Y. Wei, The influence of acid treatment of TiO2 porous film electrode on photoelectric performance of dye-sensitized solar cell. Sol. Energy 76(6), 745–750 (2004)

    CAS  Google Scholar 

  22. M. Rubinskiene, P. Viskelis, I. Jasutiene, R. Viskeliene, C. Bobinas, Impact of various factors on the composition and stability of black currant anthocyanins. Food Res. Int. 38(8–9), 867–871 (2005)

    CAS  Google Scholar 

  23. K.R. Kritikar, B.D. Basu, Indian Medicinal Plants, (International Book Distributors, Dehradun, 2003), p. 3060

    Google Scholar 

  24. V.C. Filho, A.R.S. Santos, R.O.P Campos, O.G. Miguel, R.A. Yunes, F. Ferrari, J. Messana, J.B. Calixto, Chemical and pharmacological studies of Phyllanthus caroliniensis in mice. J. Pharm. Pharmacol. 48, 1231–1236 (1996)

    Google Scholar 

  25. C.L. Narasimhudu, R.V. Raja, Phytochemical constituents of Phyllanthus species (Euphorbiaceae) from Eastern Ghats of Andhra Pradesh, India. Int. Res. J. Pharm. 3 184–200 (2012)

    Google Scholar 

  26. F. Pina, M.J. Melo, C.A.T. Laia, A. Jorge Parola, J.C. Lima, Chemistry and applications of flavylium compounds: a handful of colours. Chem. Soc. Rev. 41, 869–908 (2012)

    CAS  Google Scholar 

  27. A. Bakowska, A.Z. Kucharska, J. Oszmiański, The effects of heating, UV Irradiation and storage on stability of the anthocyanin polyphenol co-pigment complex. Food. Chem. 81, 349–355 (2003)

    CAS  Google Scholar 

  28. A. Castaneda-Ovando, M. de Pacheco-Hernandez, M.E. Paez-Hernandez, J.A. Rodriguez, C.A. Galan-Vidal, Chemical studies of anthocyanins: a review. Food. Chem. 113, 859–871 (2009)

    CAS  Google Scholar 

  29. C.Y. Chein, B.D. Hsu, Optimization of the dye-sensitized solar cell with anthocyanin as photosensitizer. Sol. Energy 98, 203–211 (2013)

    Google Scholar 

  30. F. Teoli, S. Lucioli, P. Nota, A. Frattarelli, F. Matteocci, A. Di Carlo, E. Caboni, C. Forni, Role of pH and pigment concentration for natural dye-sensitized solar cell treated with anthocyanin extracts of common fruits. J. Photochem. Photobiol. A 316, 24–30 (2016)

    CAS  Google Scholar 

  31. S. Vijayalakshmy, B. Subramanian, Effect of ZnO block layers fabricated by pulsed laser deposition and mesoporous layers by chemical method on the performance of dye sensitized solar cells. Electrochim. Acta 137, 131–137 (2014)

    CAS  Google Scholar 

  32. E.A. Gibson, L. Le Pleux, J. Fortage, Y. Pellegrin, E. Blart, F. Odobel, A. Hagfeldt, G. Boschloo, Role of the triiodide/iodide redox couple in dye regeneration in p-type dye-sensitized solar cells. Langmuir 28, 6845–6493 (2012)

    Google Scholar 

  33. C.H. Yoon, R. Vittal, J. Lee, W.-S. Chae, K.-J. Kim, Enhanced performance of a dye-sensitized solar cell with an electrodeposited-platinum counter electrode. Electrochim. Acta 53, 2890–2896 (2008)

    CAS  Google Scholar 

  34. N. Yazie, D. Worku, A. Reda, Natural dye as light-harvesting pigments for quasi-solid- state dye-sensitized solar cells. Mater. Renew. Sustain. Energy 5, 13 (2016)

    Google Scholar 

  35. E.C. Prima, B. Yuliarto, V. Suendo, Suyatman, Improving photochemical properties of Ipomea pescaprae, Imperata cylindrica (L.) Beauv and Paspalum conjugatum Berg as photosensitizers for dye sensitized solar cells. J. Mater. Sci. 25, 4603–4611 (2014)

    CAS  Google Scholar 

Download references

Acknowledgements

The work was financially supported by Ministry of New and Renewable Energy (MNRE) [Grant No. GAP 03/12], New Delhi. The authors acknowledge the Director of CSIR-CECRI for permitting to carry out the research work and his constant encouragements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Govindan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arulraj, A., Govindan, S., Vadivel, S. et al. Photovoltaic performance of TiO2 using natural sensitizer extracted from Phyllanthus Reticulatus . J Mater Sci: Mater Electron 28, 18455–18462 (2017). https://doi.org/10.1007/s10854-017-7792-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-7792-7

Navigation