Skip to main content
Log in

Annealing-induced modifications on structural, surface chemical bonding, and electrical characteristics of p-NiO/n-TiO2 heterostructure

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The influences of annealing temperatures on the electrical characteristics of a p-NiO/n-TiO2 heterojunction diode were thoroughly investigated, taking into account changes in microstructure, morphology, and surface chemistry of the p-NiO/n-TiO2 films, which were deposited on an insulating SiO2/Si layer. During different annealing processes, considerable stress variations were observed in the p-NiO/n-TiO2 films due to the crystalline evolution of p-NiO and n-TiO2. Notably, the crystallization of the TiO2 layer, which serves as the intermediary between the back contact materials and NiO, led to the evident formation of grain structures. As the annealing temperature increased, the surface roughness also grew from 5.4 to 8.7 nm. At an annealing temperature of 500 °C, the formation of a parasitic NiTiOx phase was observed, particularly at the interface between NiO and TiO2. Conversely, the study also revealed that annealing temperature played a significant role in the rectifying behavior, barrier potential, and ideality factor of the diode. Among the various annealing processes, the most favorable results were achieved after annealing at 400 °C. At this temperature, the diode demonstrated the lowest ideality factor of 1.89, accompanied by superior rectifying behavior and a barrier potential of 0.70 eV. The findings clearly indicate that any alterations in the surface chemistry and microstructure of the film directly impact the diode's characteristics. Thus, optimizing the annealing temperature becomes crucial for enhancing the performance of the p-NiO/n-TiO2 heterojunction diode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

  1. C.C. Ling, T.C. Guo, W.B. Lu, Y. Xiong et al., Nanoscale 9, 8848 (2017)

    Article  CAS  Google Scholar 

  2. A. Dey, Mater. Sci. Eng. B 229, 206 (2018)

    Article  CAS  Google Scholar 

  3. C. Balamurugan, K. Cho, B. Park, J. Kim et al., Chem. Eng. J. 430, 132690 (2022)

    Article  CAS  Google Scholar 

  4. D. Nunes, A. Pimentel, A. Goncalves, S. Pereira et al., Semicond. Sci. Technol. 34, 043001 (2019)

    Article  CAS  Google Scholar 

  5. Q.B. Zhang, K.L. Zhang, D.G. Xu, G.C. Yang et al., Prog. Mater. Sci. 60, 208 (2014)

    Article  CAS  Google Scholar 

  6. Z. Li, Z.J. Yao, A.A. Haidry, T. Plecenik et al., Int. J. Hydrogen Energy 43, 21114 (2018)

    Article  CAS  Google Scholar 

  7. E. Vinoth, N. Gopalakrishnan, J. Alloy Compd. 824, 153900 (2020)

    Article  CAS  Google Scholar 

  8. M. Chakraborty, K.K. Bera, M. Mandal, K. Ghorai et al., Appl. Surf. Sci. 541, 148450 (2021)

    Article  CAS  Google Scholar 

  9. S. Oztel, S. Kaya, E. Budak, E. Yilmaz, J. Mater. Sci. Mater. Electron. 30, 14813 (2019)

    Article  CAS  Google Scholar 

  10. D. Somvanshi, A. Pandey, S. Jit, J. Nanoelectron. Opt. 8, 349 (2013)

    Article  CAS  Google Scholar 

  11. M. Tyagi, M. Tomar, V. Gupta, J. Mater. Chem. C 2, 2387 (2014)

    Article  CAS  Google Scholar 

  12. K.O. Ukoba, F.L. Inambao, A.C. Eloka-Eboka, Int. J. Photoenergy 2018, 6062390 (2018)

    Article  Google Scholar 

  13. S. Pansri, R. Supruangnet, H. Nakajima, S. Rattanasuporn et al., J. Mater. Sci. 55, 4332 (2020)

    Article  CAS  Google Scholar 

  14. A. Boutelala, F. Bourfa, M. Mahtali, J. Mater. Sci. Mater. 31, 11379 (2020)

    Article  CAS  Google Scholar 

  15. E. Thimsen, A.B.F. Martinson, J.W. Elam, M.J. Pellin, J. Phys. Chem. C 116, 16830 (2012)

    Article  CAS  Google Scholar 

  16. M. Koca, Z. Kudas, D. Ekinci, S. Aydogan, Mater. Sci. Semicond. Proc. 121, 105436 (2021)

    Article  CAS  Google Scholar 

  17. S. Kaya, Appl. Phys. A 126, 636 (2020)

    Article  CAS  Google Scholar 

  18. B. Parida, S. Kim, M. Oh, S. Jung et al., Mater. Sci. Semicond. Proc. 71, 29 (2017)

    Article  CAS  Google Scholar 

  19. D.Z. Zhang, C.Y. Liu, R.L. Xu, B. Yin et al., Nanotechnology 28, 65505 (2017)

    Google Scholar 

  20. J.H. Kim, K. Zhu, Y.F. Yan, C.L. Perkins et al., Nano Lett. 10, 4099 (2010)

    Article  CAS  Google Scholar 

  21. S.B. Shi, Y.Y. Gao, J.P. Xu, Optik 224, 165705 (2020)

    Article  CAS  Google Scholar 

  22. H.P. Cui, J.C. Li, H.L. Yuan, RSC Adv. 8, 19861 (2018)

    Article  CAS  Google Scholar 

  23. Z.H. Ibupoto, M.A. Abbasi, X. Liu, M.S. AlSalhi et al., J Nanomater 2014, 928658 (2014)

    Article  Google Scholar 

  24. M. Athira, S. Angappane, Phys. Scr. 98, 035810 (2023)

    Article  Google Scholar 

  25. N. Kumar, M. Patel, T.T. Nguyen, S. Kim et al., Prog. Photovolt. 29, 943 (2021)

    Article  CAS  Google Scholar 

  26. T.T. Nguyen, M. Patel, S. Kim, R.A. Mir et al., J. Power Sources 481, 228865 (2021)

    Article  CAS  Google Scholar 

  27. Y.X. Liu, F. Fang, X. Sun, W.X. Huang, Appl. Surf. Sci. 596, 153606 (2022)

    Article  CAS  Google Scholar 

  28. B.O. Jung, Y.H. Kwon, D.J. Seo, D.S. Lee et al., J. Cryst. Growth 370, 314 (2013)

    Article  CAS  Google Scholar 

  29. S. Kaya, E. Yilmaz, H. Karacali, A.O. Cetinkaya et al., Mater. Sci. Semicond. Proc. 33, 42 (2015)

    Article  CAS  Google Scholar 

  30. K. Manikandan, S. Dhanuskodi, A.R. Thomas, N. Maheswari et al., RSC Adv. 6, 90559 (2016)

    Article  CAS  Google Scholar 

  31. U. Soykan, B. Ozturk Sen, S. Cetin, U. Yahsi et al., J. Fluorine Chem. 233, 109511 (2020)

    Article  CAS  Google Scholar 

  32. R.K. Mishra, P. Sahay, Ceram. Int. 38, 2295 (2012)

    Article  CAS  Google Scholar 

  33. S. Abubakar, S. Kaya, A. Aktag, E. Yilmaz, J. Mater. Sci. 28, 13920 (2017)

    CAS  Google Scholar 

  34. J. Wang, L.J. Cheng, H. Li, F. Liu et al., Ceram. Int. 45, 8700 (2019)

    Article  CAS  Google Scholar 

  35. A.H. Tamboli, A.A. Chaugule, F.A. Sheikh, W.J. Chung et al., Energy 89, 568 (2015)

    Article  CAS  Google Scholar 

  36. F.Z. Hague, R. Nandanwar, P. Singh, Optik 128, 191 (2017)

    Article  Google Scholar 

  37. J.W. Magee, R.M. Palomino, M.G. White, Catal. Lett. 146, 1771 (2016)

    Article  CAS  Google Scholar 

  38. G. Allaedini, P. Aminayi, S.M. Tasirin, AIP Adv. 5, 077161 (2015)

    Article  Google Scholar 

  39. M. El-Kemary, N. Nagy, I. El-Mehasseb, Mater. Sci. Semicond. Proc. 16, 1747 (2013)

    Article  CAS  Google Scholar 

  40. B. Liu, Y.F. Pan, G.M. Sun, J.T. Huang, Vacuum 155, 553 (2018)

    Article  CAS  Google Scholar 

  41. S. Noor, S. Sajjad, S.A.K. Leghari, M.C. Long, J. Clean. Prod. 277, 123280 (2020)

    Article  CAS  Google Scholar 

  42. V. Biju, M.A. Khadar, Spectrochim. Acta A 59, 121 (2003)

    Article  CAS  Google Scholar 

  43. H.X. Qiao, Z.Q. Wei, H. Yang, L. Zhu et al., J. Nanomater 2009, 470595 (2009)

    Article  Google Scholar 

  44. E.F.A. Zeid, I.A. Ibrahem, A.M. Ali, W.A.A. Mohamedd, Results Phys. 12, 562 (2019)

    Article  Google Scholar 

  45. A. Kumar, A. Sanger, A. Kumar, R. Chandra, RSC Adv. 6, 77636 (2016)

    Article  CAS  Google Scholar 

  46. J.Z. Chen, T.H. Chen, L.W. Lai, P.Y. Li et al., Materials 8, 4273 (2015)

    Article  CAS  Google Scholar 

  47. M. Cavas, R.K. Gupta, A.A. Al-Ghamdi, Z. Serbetci et al., J. Electroceram. 31, 260 (2013)

    Article  CAS  Google Scholar 

  48. S. Kaya, E. Yilmaz, J. Mater. Sci. 30, 12170 (2019)

    CAS  Google Scholar 

  49. S. Ruzgar, Appl. Phys. A 126, 770 (2020)

    Article  CAS  Google Scholar 

  50. M. Soylu, A.G. Al-Sehemi, A. Kalam, A.A. Al-Ghamdi et al., Mater. Sci. Semicond. Proc. 106, 104784 (2020)

    Article  CAS  Google Scholar 

  51. H.H. Gullu, D.E. Yildiz, A. Kocyigit, M. Yildirim, J. Alloy Compd. 827, 154279 (2020)

    Article  CAS  Google Scholar 

  52. S. Acharya, K.V. Bangera, G.K. Shivakumar, J. Electron. Mater. 45, 3324 (2016)

    Article  CAS  Google Scholar 

  53. A. Tataroglu, C. Ahmedova, G. Barim, A.G. Al-Sehemi et al., J. Mater. Sci. 29, 12561 (2018)

    CAS  Google Scholar 

  54. S. Kaya, J. Alloy Compd. 778, 889 (2019)

    Article  CAS  Google Scholar 

  55. O. Bayrakli, M. Terlemezoglu, H.H. Gullu, M. Parlak, J. Alloy Compd. 709, 337 (2017)

    Article  CAS  Google Scholar 

  56. H.H. Gullu, D.E. Yildiz, O.B. Surucu, M. Terlemezoglu et al., Bull. Mater. Sci. 42, 45 (2019)

    Article  Google Scholar 

  57. S.M. Sze, K.N. Kwok, Physics of Semiconductor Devices, 3rd edn. (Wiley, Hoboken, 2007)

    Google Scholar 

  58. H.H. Gullu, Bull. Mater. Sci. 42, 89 (2019)

    Article  Google Scholar 

  59. K. Yan, W.Q. Yao, Y.Y. Zhao, L.P. Yang et al., Appl. Surf. Sci. 390, 260 (2016)

    Article  CAS  Google Scholar 

  60. T.T.A. Tuan, D.H. Kuo, A.D. Saragih, G.Z. Li, Mater. Sci. Eng. B 222, 18 (2017)

    Article  CAS  Google Scholar 

  61. M. Budde, D. Splith, P. Mazzolini, A. Tahraoui et al., Appl. Phys. Lett. 117, 252106 (2020)

    Article  CAS  Google Scholar 

  62. H.E. Lapa, A. Kokce, D.A. Aldemir, A.F. Ozdemir, J. Mater. Sci. 32, 4448 (2021)

    CAS  Google Scholar 

  63. D.H. Vieira, M.D. Ozorio, G.L. Nogueira, L. Fugikawa-Santos et al., Mater. Sci. Semicond. Proc. 121, 105339 (2021)

    Article  CAS  Google Scholar 

  64. R. Sinha, N. Roy, T.K. Mandal, ACS Appl. Mater. Interface 12, 33428 (2020)

    Article  CAS  Google Scholar 

  65. W. Chebil, A. Gokarna, A. Fouzri, N. Hamdaoui et al., J. Alloy Compd. 771, 448 (2019)

    Article  CAS  Google Scholar 

  66. C.A. Canbay, A. Tataroglu, A. Dere, A. Al-Ghamdi et al., J. Alloy Compd. 688, 762 (2016)

    Article  CAS  Google Scholar 

  67. N. Alshwawreh, B. Alhamarneh, Q. Altwarah, S. Quandour et al., Materials 14, 5738 (2021)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The present study was partially supported by Presidency of the Republic of Turkey Presidency of Strategy and Budget (Contract Number: 2016K12-2834) and BAIBU under Contract Number: 2018.34.01.1395 and partially were supported by own budget of the authors.

Funding

No related funding.

Author information

Authors and Affiliations

Authors

Contributions

All the authors analyzed and discussed the results and contributed to the writing of the paper.

Corresponding author

Correspondence to Muhsin U. Doğan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaya, S., Soykan, U., Sunkar, M. et al. Annealing-induced modifications on structural, surface chemical bonding, and electrical characteristics of p-NiO/n-TiO2 heterostructure. J Mater Sci: Mater Electron 34, 1725 (2023). https://doi.org/10.1007/s10854-023-11140-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-11140-z

Navigation