Skip to main content
Log in

Facile synthesis of the MOF derived ZnMn2O4 nanorods for dyes degradation in water

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The metal organic frameworks (MOF) derived spinel materials have attracted much interest owing to better structural behavior. In this study, we synthesized the spinel material via MOF assisted method with hydrothermal strategies to explore the photocatalytic efficiency toward photomineralization of noxious organic pollutant like rhodamine B (RhB) and crystal violet (CV). The morphological and structural characteristics of the photocatalyst were investigated with scanning electron microscopy (SEM) and X-ray diffraction (XRD), indicating the nanorod morphology and tetragonal crystal system, respectively. The Brunauer Emmett Teller (BET) methodology measured the surface area of ZMO (56.45 m3 g−1) that indirectly controls the photocatalytic behavior of the photocatalyst. Moreover, the photocatalytic efficacy of the fabricated photocatalyst is measured with ultra-visible spectroscopy (UV–Vis.) for rhodamine B (RhB) and crystal violet. The prepared spinel shows a 94.25% photocatalytic efficiency toward the mineralization of rhodamine B than crystal violet (CV, 90.52%). The obtained rate constant (k) for RhB and CV are 0.029 and 0.01 min−1, respectively. The scavenger analysis also revealed that photoinduced reactive species such as electrons (e) and holes (h+) play a substantial role in the degradation of model pollutant. The stability analysis suggests that the ZMO nanorods exhibited excellent stable structural and morphological behavior. Thus, the current studies provide a path toward developing a metal oxide produced from MOFs for the use of photocatalytic removal of a wide range of organic pollutants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Scheme 2
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

Data will be provided on reasonable request.

References

  1. A. Bhatia, P. Koul, A. Dhadwal, K. Kaur, A. Kumar, Current and Future prospective of lignin derived materials for the removal of toxic dyes from wastewater. Anal. Chem. Lett. 11, 635–660 (2021). https://doi.org/10.1080/22297928.2021.1952895

    Article  CAS  Google Scholar 

  2. S. Das, U.S. Mondal, S. Paul, Nanophytoremediation technology: a better approach for environmental remediation of toxic metals and dyes from water. Phytoremed. Technol. Remov. Heavy Met. Other Contam. From Soil Water (2022). https://doi.org/10.1016/B978-0-323-85763-5.00002-7

    Article  Google Scholar 

  3. M. Ismail, K. Akhtar, M.I. Khan, T. Kamal, M.A. Khan, M.A. Asiri et al., Pollution, toxicity and carcinogenicity of organic dyes and their catalytic bio-remediation. Curr. Pharm. Des. 25, 3645–3663 (2019). https://doi.org/10.2174/1381612825666191021142026

    Article  CAS  Google Scholar 

  4. N. Chaukura, K.K. Kefeni, I. Chikurunhe, I. Nyambiya, W. Gwenzi, W. Moyo et al., Microplastics in the aquatic environment—the occurrence, sources, ecological impacts, fate, and remediation challenges. Pollutants 1, 95–118 (2021). https://doi.org/10.3390/POLLUTANTS1020009

    Article  Google Scholar 

  5. M.M. Altaf, D.X. Ping, A. Shakoor, M. Imtiaz, A.M.A. Atique-ur-Rehman et al., Delineating vanadium (V) ecological distribution, its toxicant potential, and effective remediation strategies from contaminated soils. J. Soil Sci. Plant Nutr. 22(1), 121–139 (2021). https://doi.org/10.1007/S42729-021-00638-2

    Article  Google Scholar 

  6. R. Ramírez-García, N. Gohil, V. Singh, Recent advances, challenges, and opportunities in bioremediation of hazardous materials. Phytomanag. Pollut. Sites Mark Oppor. Sustain. Phytoremed. (2019). https://doi.org/10.1016/B978-0-12-813912-7.00021-1

    Article  Google Scholar 

  7. A. Jrad, P. Damacet, Z. Yaghi, M. Ahmad, M. Hmadeh, Zr-based metal-organic framework nanocrystals for water remediation. ACS Appl. Nano. Mater. 5, 10795–10808 (2022). https://doi.org/10.1021/ACSANM.2C02128/ASSET/IMAGES/LARGE/AN2C02128_0009.JPEG

    Article  CAS  Google Scholar 

  8. S.M. Hosseinpour-mashkani, A. Sobhani-Nasab, M. Mehrzad, Controlling the synthesis SrMoO4 nanostructures and investigation its photocatalyst application. J. Mater. Sci. Mater. Electron. 27, 5758–5763 (2016). https://doi.org/10.1007/S10854-016-4489-2/SCHEMES/1

    Article  CAS  Google Scholar 

  9. S.M. Hosseinpour-Mashkani, M. Maddahfar, A. Sobhani-Nasab, Precipitation synthesis, characterization, morphological control, and photocatalyst application of ZnWO4 nanoparticles. J. Electron. Mater. 45, 3612–3620 (2016). https://doi.org/10.1007/S11664-016-4532-3/METRICS

    Article  CAS  Google Scholar 

  10. M. Ramezani, S.M. Hosseinpour-Mashkani, Controlled synthesis, characterization, and photocatalytic application of Co2TiO4 nanoparticles. J. Electron. Mater. 46(1371), 1377 (2017). https://doi.org/10.1007/S11664-016-5129-6/METRICS

    Article  Google Scholar 

  11. S.M. Hosseinpour-Mashkani, A. Sobhani-Nasab, Green synthesis and characterization of NaEuTi2O6 nanoparticles and its photocatalyst application. J. Mater. Sci. Mater. Electron. 28, 4345–4350 (2017). https://doi.org/10.1007/S10854-016-6060-6/SCHEMES/1

    Article  CAS  Google Scholar 

  12. P. Behera, A. Ray, S.P. Tripathy, L. Acharya, S. Subudhi, K. Parida, ZIF-8 derived porous C, N co-doped ZnO modified B-g-C3N4: a Z-scheme charge dynamics approach operative towards photocatalytic hydrogen evolution and ciprofloxacin degradation. J. Photochem. Photobiol. A Chem. 436, 114415 (2023). https://doi.org/10.1016/J.JPHOTOCHEM.2022.114415

    Article  CAS  Google Scholar 

  13. B. Shi, G. Li, D. Wang, C. Feng, H. Tang, Removal of direct dyes by coagulation: the performance of preformed polymeric aluminum species. J. Hazard. Mater. 143, 567–574 (2007). https://doi.org/10.1016/J.JHAZMAT.2006.09.076

    Article  CAS  Google Scholar 

  14. F. Medrano-Rodríguez, A. Picos-Benítez, E. Brillas, E.R. Bandala, T. Pérez, J.M. Peralta-Hernández, Electrochemical advanced oxidation discoloration and removal of three brown diazo dyes used in the tannery industry. J. Electroanal. Chem. 873, 114360 (2020). https://doi.org/10.1016/J.JELECHEM.2020.114360

    Article  Google Scholar 

  15. M.T. Yagub, T.K. Sen, S. Afroze, H.M. Ang, Dye and its removal from aqueous solution by adsorption: a review. Adv. Colloid Interface Sci. 209, 172–184 (2014). https://doi.org/10.1016/J.CIS.2014.04.002

    Article  CAS  Google Scholar 

  16. S.C.M. Signorelli, J.M. Costa, A.F. Almeida Neto, Electrocoagulation-flotation for orange II dye removal: Kinetics, costs, and process variables effects. J. Environ. Chem. Eng. 9, 106157 (2021). https://doi.org/10.1016/J.JECE.2021.106157

    Article  CAS  Google Scholar 

  17. S.M. Alardhi, T.M. Albayati, J.M. Alrubaye, A hybrid adsorption membrane process for removal of dye from synthetic and actual wastewater. Chem. Eng. Process - Process Intensif. 157, 108113 (2020). https://doi.org/10.1016/J.CEP.2020.108113

    Article  CAS  Google Scholar 

  18. M.F. Abid, M.A. Zablouk, A.M. Abid-Alameer, Experimental study of dye removal from industrial wastewater by membrane technologies of reverse osmosis and nanofiltration. Iran J. Environ. Heal. Sci. Eng. 9, 1–9 (2012). https://doi.org/10.1186/1735-2746-9-17/TABLES/6

    Article  Google Scholar 

  19. A. Roy, C. Mishra, S. Jain, N. Solanki, A review of general and modern methods of air purification. J. Therm. Eng. 5, 22–28 (2019). https://doi.org/10.18186/THERMAL.529054

    Article  CAS  Google Scholar 

  20. M. Kositzi, A. Antoniadis, I. Poulios, I. Kiridis, S. Malato, Solar photocatalytic treatment of simulated dyestuff effluents. Sol. Energy 77, 591–600 (2004). https://doi.org/10.1016/J.SOLENER.2004.04.018

    Article  CAS  Google Scholar 

  21. S. Subudhi, D. Rath, K.M. Parida, A mechanistic approach towards the photocatalytic organic transformations over functionalised metal organic frameworks: a review. Catal. Sci. Technol. 8, 679–696 (2018). https://doi.org/10.1039/C7CY02094E

    Article  CAS  Google Scholar 

  22. S. Subudhi, L. Paramanik, S. Sultana, S. Mansingh, P. Mohapatra, K. Parida, A type-II interband alignment heterojunction architecture of cobalt titanate integrated UiO-66-NH2: a visible light mediated photocatalytic approach directed towards Norfloxacin degradation and green energy (Hydrogen) evolution. J. Colloid Interface Sci. 568, 89–105 (2020). https://doi.org/10.1016/J.JCIS.2020.02.043

    Article  CAS  Google Scholar 

  23. S. Subudhi, G. Swain, S.P. Tripathy, K. Parida, UiO-66-NH2 metal-organic frameworks with embedded MoS2 nanoflakes for visible-light-mediated H2 and O2 evolution. Inorg. Chem. 59, 9824–9837 (2020). https://doi.org/10.1021/ACS.INORGCHEM.0C01030/ASSET/IMAGES/MEDIUM/IC0C01030_M026.GIF

    Article  CAS  Google Scholar 

  24. S.P. Tripathy, S. Subudhi, A. Ray, P. Behera, A. Bhaumik, K. Parida, Mixed-valence bimetallic Ce/Zr MOF-based nanoarchitecture: a visible-light-active photocatalyst for ciprofloxacin degradation and hydrogen evolution. Langmuir 38, 1766–1780 (2022). https://doi.org/10.1021/ACS.LANGMUIR.1C02873/ASSET/IMAGES/LARGE/LA1C02873_0011.JPEG

    Article  CAS  Google Scholar 

  25. J. Panda, S.P. Tripathy, S. Dash, A. Ray, P. Behera, S. Subudhi et al., Inner transition metal-modulated metal organic frameworks (IT-MOFs) and their derived nanomaterials: a strategic approach towards stupendous photocatalysis. Nanoscale 15, 7640–7675 (2023). https://doi.org/10.1039/D3NR00274H

    Article  CAS  Google Scholar 

  26. X. Li, Z. Li, J. Yang, Proposed photosynthesis method for producing hydrogen from dissociated water molecules using incident near-infrared light. Phys. Rev. Lett. 112, 018301 (2014). https://doi.org/10.1103/PHYSREVLETT.112.018301/FIGURES/4/MEDIUM

    Article  Google Scholar 

  27. Y. Lin, D. Pan, H. Luo, Hollow direct Z-Scheme CdS/BiVO4 composite with boosted photocatalytic performance for RhB degradation and hydrogen production. Mater. Sci. Semicond. Process. 121, 105453 (2021). https://doi.org/10.1016/J.MSSP.2020.105453

    Article  CAS  Google Scholar 

  28. A.J. Bard, Design of semiconductor photoelectrochemical systems for solar energy conversion. J. Phys. Chem. 86, 172–177 (1982). https://doi.org/10.1021/J100391A008/ASSET/J100391A008.FP.PNG_V03

    Article  CAS  Google Scholar 

  29. A. Sobhani-Nasab, M. Maddahfar, S.M. Hosseinpour-Mashkani, Ce(MoO4)2 nanostructures: synthesis, characterization, and its photocatalyst application through the ultrasonic method. J. Mol. Liq. 216, 1–5 (2016). https://doi.org/10.1016/J.MOLLIQ.2015.12.104

    Article  CAS  Google Scholar 

  30. Z. Aghajani, S.M. Hosseinpour-Mashkani, Design novel Ce(MoO4)2@TiO2 n–n heterostructures: enhancement photodegradation of toxic dyes. J. Mater. Sci. Mater. Electron. 31, 6593–6606 (2020). https://doi.org/10.1007/S10854-020-03215-Y/FIGURES/17

    Article  CAS  Google Scholar 

  31. M. Ramezani, S.M. Hosseinpour-Mashkani, A. Sobhani-Nasab, E.H. Ghasemi, Synthesis, characterization, and morphological control of ZnMoO4 nanostructures through precipitation method and its photocatalyst application. J. Mater. Sci. Mater. Electron. 26, 7588–7594 (2015). https://doi.org/10.1007/S10854-015-3395-3/FIGURES/6

    Article  CAS  Google Scholar 

  32. A.P. Pelliccioli, J. Wirz, Photoremovable protecting groups: reaction mechanisms and applications. Photochem. Photobiol. Sci. 1, 441–458 (2002). https://doi.org/10.1039/B200777K

    Article  Google Scholar 

  33. P.H. Pathak, X. Feng, P. Hu, P. Mohapatra, visible light communication, networking, and sensing: a survey, potential and challenges. IEEE Commun. Surv. Tutor. 17, 2047–2077 (2015). https://doi.org/10.1109/COMST.2015.2476474

    Article  Google Scholar 

  34. V. Etacheri, C. Di Valentin, J. Schneider, D. Bahnemann, S.C. Pillai, Visible-light activation of TiO2 photocatalysts: advances in theory and experiments. J. Photochem. Photobiol. C Photochem. Rev. 25, 1–29 (2015). https://doi.org/10.1016/J.JPHOTOCHEMREV.2015.08.003

    Article  CAS  Google Scholar 

  35. Y. AlSalka, L.I. Granone, W. Ramadan, A. Hakki, R. Dillert, D.W. Bahnemann, Iron-based photocatalytic and photoelectrocatalytic nano-structures: facts, perspectives, and expectations. Appl. Catal. B Environ. 244, 1065–1095 (2019). https://doi.org/10.1016/J.APCATB.2018.12.014

    Article  CAS  Google Scholar 

  36. M. Amiri, K. Eskandari, M. Salavati-Niasari, Magnetically retrievable ferrite nanoparticles in the catalysis application. Adv. Colloid Interface Sci. 271, 101982 (2019). https://doi.org/10.1016/J.CIS.2019.07.003

    Article  CAS  Google Scholar 

  37. S. Chandrasekaran, C. Bowen, P. Zhang, Z. Li, Q. Yuan, X. Ren et al., Spinel photocatalysts for environmental remediation, hydrogen generation, CO2 reduction and photoelectrochemical water splitting. J. Mater. Chem. A 6, 11078–11104 (2018). https://doi.org/10.1039/C8TA03669A

    Article  CAS  Google Scholar 

  38. R. Dom, A.S. Chary, R. Subasri, N.Y. Hebalkar, P.H. Borse, Solar hydrogen generation from spinel ZnFe2O4 photocatalyst: effect of synthesis methods. Int. J. Energy Res. 39, 1378–1390 (2015). https://doi.org/10.1002/ER.3340

    Article  CAS  Google Scholar 

  39. J. Liang, Y. Wei, J. Zhang, Y. Yao, G. He, B. Tang et al., Scalable green method to fabricate magnetically separable NiFe2O4-reduced graphene oxide nanocomposites with enhanced photocatalytic performance driven by visible light. Ind. Eng. Chem. Res. 57, 4311–4319 (2018). https://doi.org/10.1021/ACS.IECR.8B00218/ASSET/IMAGES/LARGE/IE-2018-00218S_0010.JPEG

    Article  CAS  Google Scholar 

  40. H.A.J.L. Mourão, A.R. Malagutti, C. Ribeiro, Synthesis of TiO2-coated CoFe2O4 photocatalysts applied to the photodegradation of atrazine and rhodamine B in water. Appl. Catal. A Gen. 382, 284–292 (2010). https://doi.org/10.1016/J.APCATA.2010.05.007

    Article  Google Scholar 

  41. F. Zhu, J. Ma, Q. Ji, H. Cheng, S. Komarneni, Visible-light-driven activation of sodium persulfate for accelerating orange II degradation using ZnMn2O4 photocatalyst. Chemosphere 278, 130404 (2021). https://doi.org/10.1016/J.CHEMOSPHERE.2021.130404

    Article  CAS  Google Scholar 

  42. M.H. Sun, S.Z. Huang, L.H. Chen, Y. Li, X.Y. Yang, Z.Y. Yuan et al., Applications of hierarchically structured porous materials from energy storage and conversion, catalysis, photocatalysis, adsorption, separation, and sensing to biomedicine. Chem. Soc. Rev. 45, 3479–3563 (2016). https://doi.org/10.1039/C6CS00135A

    Article  CAS  Google Scholar 

  43. S. Kong, Z. Jin, H. Liu, Y. Wang, Morphological effect of graphene nanosheets on ultrathin CoS nanosheets and their applications for high-performance Li-Ion batteries and photocatalysis. J. Phys. Chem. C 118, 25355–25364 (2014). https://doi.org/10.1021/JP508698Q/SUPPL_FILE/JP508698Q_SI_001.PDF

    Article  CAS  Google Scholar 

  44. N.N. Ingle, S. Shirsat, P. Sayyad, G. Bodkhe, H. Patil, M. Deshmukh et al., Influence of swift heavy ion irradiation on sensing properties of nickel-(NRs-Ni3HHTP2) metal-organic framework. J. Mater. Sci. Mater. Electron. 32, 18657–18668 (2021). https://doi.org/10.1007/S10854-021-06353-Z/FIGURES/6

    Article  CAS  Google Scholar 

  45. F. Kassir, M. Azoury, P. Damacet, Z. Harajli, M. El Jamal, P.A. Ebrahimian, Characterization and performance of TiO2 nanoparticles prepared by microwave in different mixtures of water and ethylene glycol for the food dye E131 VF degradation. Port. Electrochim. Acta. 41, 247–262 (2023). https://doi.org/10.4152/pea.2023410305

    Article  CAS  Google Scholar 

  46. S. Subudhi, S. Mansingh, G. Swain, A. Behera, D. Rath, K. Parida, HPW-Anchored UiO-66 metal-organic framework: a promising photocatalyst effective toward tetracycline hydrochloride degradation and H 2 evolution via z-scheme charge dynamics. Inorg. Chem. 58, 4921–4934 (2019). https://doi.org/10.1021/ACS.INORGCHEM.8B03544/ASSET/IMAGES/LARGE/IC-2018-03544G_0010.JPEG

    Article  CAS  Google Scholar 

  47. S. Prakash Tripathy, S. Subudhi, S. Das, M. Kumar Ghosh, M. Das, R. Acharya et al., Hydrolytically stable citrate capped Fe3O4@UiO-66-NH2 MOF: a hetero-structure composite with enhanced activity towards Cr (VI) adsorption and photocatalytic H2 evolution. J. Colloid Interface Sci. 606, 353–366 (2022). https://doi.org/10.1016/J.JCIS.2021.08.031

    Article  CAS  Google Scholar 

  48. P. Behera, S. Subudhi, S.P. Tripathy, K. Parida, MOF derived nano-materials: a recent progress in strategic fabrication, characterization and mechanistic insight towards divergent photocatalytic applications. Coord. Chem. Rev. 456, 214392 (2022). https://doi.org/10.1016/J.CCR.2021.214392

    Article  CAS  Google Scholar 

  49. S. Ye, M. Yan, X. Tan, J. Liang, G. Zeng, H. Wu et al., Facile assembled biochar-based nanocomposite with improved graphitization for efficient photocatalytic activity driven by visible light. Appl. Catal. B Environ. 250, 78–88 (2019). https://doi.org/10.1016/J.APCATB.2019.03.004

    Article  CAS  Google Scholar 

  50. A.M. Babu, R. Rajeev, D.A. Thadathil, A. Varghese, G. Hegde, Surface modulation and structural engineering of graphitic carbon nitride for electrochemical sensing applications. J. Nanostruct. Chem. 125(12), 765–807 (2021). https://doi.org/10.1007/S40097-021-00459-W

    Article  Google Scholar 

  51. B. Li, J. Liu, Q. Liu, R. Chen, H. Zhang, J. Yu et al., Core-shell structure of ZnO/Co3O4 composites derived from bimetallic-organic frameworks with superior sensing performance for ethanol gas. Appl. Surf. Sci. 475, 700–709 (2019). https://doi.org/10.1016/J.APSUSC.2018.12.284

    Article  CAS  Google Scholar 

  52. Y.V. Kaneti, S. Dutta, M.S.A. Hossain, M.J.A. Shiddiky, K.L. Tung, F.K. Shieh et al., Strategies for improving the functionality of zeolitic imidazolate frameworks: tailoring nanoarchitectures for functional applications. Adv. Mater. 29, 1700213 (2017). https://doi.org/10.1002/ADMA.201700213

    Article  Google Scholar 

  53. T. Wang, L. Shi, J. Tang, V. Malgras, S. Asahina, G. Liu et al., A Co3O4-embedded porous ZnO rhombic dodecahedron prepared using zeolitic imidazolate frameworks as precursors for CO2 photoreduction. Nanoscale 8, 6712–6720 (2016). https://doi.org/10.1039/C5NR08747C

    Article  CAS  Google Scholar 

  54. J. Theerthagiri, R.A. Senthil, B. Senthilkumar, A. Reddy Polu, J. Madhavan, M. Ashokkumar, Recent advances in MoS2 nanostructured materials for energy and environmental applications – a review. J. Solid State Chem. 252, 43–71 (2017). https://doi.org/10.1016/J.JSSC.2017.04.041

    Article  CAS  Google Scholar 

  55. S.A. Ansari, M.M. Khan, M.O. Ansari, J. Lee, M.H. Cho, Biogenic synthesis, photocatalytic, and photoelectrochemical performance of Ag–ZnO nanocomposite. J. Phys. Chem. C 117, 27023–27030 (2013). https://doi.org/10.1021/JP410063P/SUPPL_FILE/JP410063P_SI_001.PDF

    Article  CAS  Google Scholar 

  56. X. Liu, J. Iocozzia, Y. Wang, X. Cui, Y. Chen, S. Zhao et al., Noble metal–metal oxide nanohybrids with tailored nanostructures for efficient solar energy conversion, photocatalysis and environmental remediation. Energy Environ. Sci. 10, 402–434 (2017). https://doi.org/10.1039/C6EE02265K

    Article  CAS  Google Scholar 

  57. M. Basak, M.L. Rahman, M.F. Ahmed, B. Biswas, N. Sharmin, The use of X-ray diffraction peak profile analysis to determine the structural parameters of cobalt ferrite nanoparticles using Debye-Scherrer, Williamson-Hall, Halder-Wagner and Size-strain plot: different precipitating agent approach. J. Alloys Compd. 895, 162694 (2022). https://doi.org/10.1016/J.JALLCOM.2021.162694

    Article  CAS  Google Scholar 

  58. T. Amutha, M. Rameshbabu, S. Muthupandi, K. Prabha, Theoretical comparison of lattice parameter and particle size determination of pure tin oxide nanoparticles from powder X-ray diffraction. Mater. Today Proc. 49, 2624–2627 (2022). https://doi.org/10.1016/J.MATPR.2021.08.044

    Article  CAS  Google Scholar 

  59. M. Singh, D. Vadher, V. Dixit, C. Jariwala, Synthesis, optimization and characterization of zinc oxide nanoparticles prepared by sol–gel technique. Mater. Today Proc. 48, 690–692 (2022). https://doi.org/10.1016/J.MATPR.2021.08.145

    Article  CAS  Google Scholar 

  60. J. Singh, A.S. Dhaliwal, Electrochemical and photocatalytic degradation of methylene blue by using rGO/AgNWs nanocomposite synthesized by electroplating on stainless steel. J. Phys. Chem. Solids 160, 110358 (2022). https://doi.org/10.1016/J.JPCS.2021.110358

    Article  CAS  Google Scholar 

  61. H. Bayahia, Green synthesis of activated carbon doped tungsten trioxide photocatalysts using leaf of basil (Ocimum basilicum) for photocatalytic degradation of methylene blue under sunlight. J. Saudi Chem. Soc. 26, 101432 (2022). https://doi.org/10.1016/J.JSCS.2022.101432

    Article  CAS  Google Scholar 

  62. Z.K. Heiba, M.B. Mohamed, A. Badawi, Modification of the optical and structural characteristics of ZnMn2O4 upon combining with nano-MnS. Appl. Phys. A Mater. Sci. Process. 128, 1–11 (2022). https://doi.org/10.1007/S00339-022-05271-Z/FIGURES/9

    Article  Google Scholar 

  63. M. Abdullah, P. John, M.N. Ashiq, S. Manzoor, M.I. Ghori, M.U. Nisa et al., Development of CuO/CuS/MnO2 ternary nanocomposite for visible light-induced photocatalytic degradation of methylene blue. Nanotechnol. Environ. Eng. 1, 1–11 (2022). https://doi.org/10.1007/S41204-022-00266-W/FIGURES/8

    Article  Google Scholar 

  64. M. Abdullah, P. John, Z. Ahmad, M.N. Ashiq, S. Manzoor, M.I. Ghori et al., Visible-light-driven ZnO/ZnS/MnO2 ternary nanocomposite catalyst: synthesis, characterization and photocatalytic degradation of methylene blue. Appl. Nanosci. 11, 2361–2370 (2021). https://doi.org/10.1007/S13204-021-02008-X/TABLES/1

    Article  CAS  Google Scholar 

  65. Y. Fang, S.R. Zhu, M.K. Wu, W.N. Zhao, L. Han, MOF-derived In2S3 nanorods for photocatalytic removal of dye and antibiotics. J. Solid State Chem. 266, 205–209 (2018). https://doi.org/10.1016/J.JSSC.2018.07.026

    Article  CAS  Google Scholar 

  66. N. Kitchamsetti, D. Narsimulu, A. Chinthakuntla, C. Shilpa Chakra, A.L.F. de Barros, Bimetallic MOF derived ZnCo2O4 nanocages as a novel class of high performance photocatalyst for the removal of organic pollutants. Inorg. Chem. Commun. 144, 109946 (2022). https://doi.org/10.1016/J.INOCHE.2022.109946

    Article  CAS  Google Scholar 

  67. L. Ruan, Y. Jia, J. Guan, B. Xue, S. Huang, Z. Wang et al., Tribo-electro-catalytic dye degradation driven by mechanical friction using MOF-derived NiCo2O4 double-shelled nanocages. J. Clean Prod. 345, 131060 (2022). https://doi.org/10.1016/J.JCLEPRO.2022.131060

    Article  CAS  Google Scholar 

  68. E. Doustkhah, M. Esmat, N. Fukata, Y. Ide, D.A.H. Hanaor, M.H.N. Assadi, MOF-derived nanocrystalline ZnO with controlled orientation and photocatalytic activity. Chemosphere 303, 134932 (2022). https://doi.org/10.1016/J.CHEMOSPHERE.2022.134932

    Article  CAS  Google Scholar 

  69. F. Uz Zaman, S. Nagamuthu, K. Cui, L. Hou, C. Yuan, Microwave-assisted synthesis of porous heterojunction ZnO/ZnMn2O4 microrods for efficient degradation of organic pollutants. Inorg. Chem. Commun. 144, 109845 (2022). https://doi.org/10.1016/J.INOCHE.2022.109845

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The researchers would like to acknowledge Deanship of Scientific Research, Taif University for funding this work.

Funding

This study was supported by Taif University, (The researchers would like to acknowledge Deanship of Scientific Research, Taif University for funding this work).

Author information

Authors and Affiliations

Authors

Contributions

All the authors contribute to the work and are known with the submission.

Corresponding author

Correspondence to Hafiz Muhammad Tahir Farid.

Ethics declarations

Competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fallatah, A.M., Alahmari, S.D. & Farid, H.M.T. Facile synthesis of the MOF derived ZnMn2O4 nanorods for dyes degradation in water. J Mater Sci: Mater Electron 34, 1630 (2023). https://doi.org/10.1007/s10854-023-11062-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-11062-w

Navigation