Skip to main content
Log in

La and Cr co-doped SrTiO3 prepared by citric-combustion method for photocatalytic degradation of antibiotics under visible-light

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The problem of antibiotic contamination has received increasing attention, and photocatalytic degradation is considered to be an effective solution. In this paper, a series of La, Cr co-doped SrTiO3 nanoparticles (La0.0xSr1−0.0xTi1−0.0xCr0.0xO3, denoted as STO-x) were synthesized using a simple citric-combustion method. X-ray diffraction pattern shows that all samples form a cubic perovskite structure, with a shift in the characteristic peak for the doped samples. The UV–Vis diffuse reflectance spectroscopy studies reveal that all Cr-doped samples have strong absorption of visible light. STO-1 has the largest specific surface area of 22.49 m2/g and the lowest photoluminescence intensity. More attractively, according to the X-ray photoelectron spectroscopy, the largest Cr3+/Cr6+ molar ratio is found in the STO-1 sample. The photocatalytic investigation demonstrates the significant photocatalytic activity of the doped samples for the degradation of tetracycline and ciprofloxacin under visible light, with STO-1 showing the best performance. Further, the mechanism of enhanced photocatalytic activity of La, Cr co-doped SrTiO3 samples is studied by trapping experiments. Therefore, this work shows that La, Cr ion co-doping is an effective method to improve the visible photocatalytic performance of SrTiO3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data availability

The datasets generated during the current study are available from the corresponding author on reasonable request.

References

  1. E. Grabowska, Appl. Catal. B 186, 97 (2016). https://doi.org/10.1016/j.apcatb.2015.12.035

    Article  CAS  Google Scholar 

  2. Y. Tachibana, L. Vayssieres, J.R. Durrant, Nat. Photonics 6, 511 (2012). https://doi.org/10.1038/nphoton.2012.175

    Article  CAS  Google Scholar 

  3. S.Z. Baykara, I.J. Hydrogen, Energy 43, 10605 (2018). https://doi.org/10.1016/j.ijhydene.2018.02.022

    Article  CAS  Google Scholar 

  4. F. Zhang, X. Wang, H. Liu et al., Appl. Sci. (2019). https://doi.org/10.3390/app9122489

    Article  Google Scholar 

  5. J. Low, J. Yu, M. Jaroniec, S. Wageh, A.A. Al-Ghamdi, Adv. Mater. (2017). https://doi.org/10.1002/adma.201601694

    Article  Google Scholar 

  6. Z. Li, P. Zheng, W. Zhang, C. Surf et al., A Physicochem. Eng. Asp. (2022). https://doi.org/10.1016/j.colsurfa.2022.129686

    Article  Google Scholar 

  7. H. Mai, D. Chen, Y. Tachibana, H. Suzuki, R. Abe, R.A. Caruso, Chem. Soc. Rev. 50, 13692 (2021). https://doi.org/10.1039/d1cs00684c

    Article  CAS  Google Scholar 

  8. A. Kumar, A. Kumar, V. Krishnan, ACS Catal. 10, 10253 (2020). https://doi.org/10.1021/acscatal.0c02947

    Article  CAS  Google Scholar 

  9. Y. Luo, B. Deng, Y. Pu et al., Appl. Catal. B 247, 1 (2019). https://doi.org/10.1016/j.apcatb.2019.01.089

    Article  CAS  Google Scholar 

  10. Y. Chang, Y. Xuan, C. Zhang, H. Hao, K. Yu, S. Liu, Catal. Today 327, 315 (2019). https://doi.org/10.1016/j.cattod.2018.04.033

    Article  CAS  Google Scholar 

  11. K. Wei, Y. Faraj, G. Yao, R. Xie, B. Lai, Chem. Eng. J. (2021). https://doi.org/10.1016/j.cej.2021.128783

    Article  Google Scholar 

  12. K. Han, Y.C. Lin, C.M. Yang, R. Jong, G. Mul, B. Mei, ChemSusChem 10, 4510 (2017). https://doi.org/10.1002/cssc.201701794

    Article  CAS  Google Scholar 

  13. Y. Guo, X. Qiu, H. Dong, X. Zhou, Phys. Chem. Chem. Phys. 17, 21611 (2015). https://doi.org/10.1039/c5cp03005f

    Article  CAS  Google Scholar 

  14. P. Nunocha, M. Kaewpanha, T. Bongkarn et al., Mater. Sci. Semicond. Process. (2021). https://doi.org/10.1016/j.mssp.2021.106001

    Article  Google Scholar 

  15. B. Kiss, T.D. Manning, D. Hesp et al., Appl. Catal. B 206, 547 (2017). https://doi.org/10.1016/j.apcatb.2017.01.066

    Article  CAS  Google Scholar 

  16. Z. Ying, S. Chen, T. Peng, R. Li, J. Zhang, Eur. J. Inorg. Chem. 2019, 2182 (2019). https://doi.org/10.1002/ejic.201900098

    Article  CAS  Google Scholar 

  17. Y. Lin, S. Wu, X. Li et al., Appl. Catal. B 227, 557 (2018). https://doi.org/10.1016/j.apcatb.2018.01.054

    Article  CAS  Google Scholar 

  18. D. Wang, J. Ye, T. Kako, T. Kimura, J. Phys. Chem. B 110, 15824 (2006). https://doi.org/10.1021/jp062487p

    Article  CAS  Google Scholar 

  19. J. Cai, Y. Ren, Y. Xia et al., Chemosphere 295, 133828 (2022). https://doi.org/10.1016/j.chemosphere.2022.133828

    Article  CAS  Google Scholar 

  20. S. Ouyang, H. Tong, N. Umezawa et al., J. Am. Chem. Soc. 134, 1974 (2012). https://doi.org/10.1021/ja210610h

    Article  CAS  Google Scholar 

  21. T. Ishii, H. Kato, A. Kudo, J. Photochem Photobiol, J. Photochem. Photobiol. A 163, 181 (2004). https://doi.org/10.1016/s1010-6030(03)00442-8

    Article  CAS  Google Scholar 

  22. X. Xu, M. Lv, X. Sun, G. Liu, J. Mater. Sci. 51, 6464 (2016). https://doi.org/10.1007/s10853-016-9945-0

    Article  CAS  Google Scholar 

  23. S. Tonda, S. Kumar, O. Anjaneyulu, V. Shanker, Phys. Chem. Chem. Phys. 16, 23819 (2014). https://doi.org/10.1039/c4cp02963a

    Article  CAS  Google Scholar 

  24. J. Jiang, Y. Jia, Y. Wang, R. Chong, L. Xu, X. Liu, Appl. Surf. Sci. 486, 93 (2019). https://doi.org/10.1016/j.apsusc.2019.04.261

    Article  CAS  Google Scholar 

  25. D. Li, W. Shi, J. Catal. 37, 792 (2016). https://doi.org/10.1016/s1872-2067(15)61054-3

    Article  CAS  Google Scholar 

  26. C.P. Silva, V. Louros, V. Silva, M. Otero, D.L.D. Lima, Toxics (2021). https://doi.org/10.3390/toxics9080194

    Article  Google Scholar 

  27. H. Che, J. Chen, K. Huang et al., J. Alloys Compd. 688, 882 (2016). https://doi.org/10.1016/j.jallcom.2016.07.311

    Article  CAS  Google Scholar 

  28. X.-J. Wen, C.-G. Niu, L. Zhang, C. Liang, G.-M. Zeng, J. Catal. 356, 283 (2017). https://doi.org/10.1016/j.jcat.2017.10.022

    Article  CAS  Google Scholar 

  29. G. Venkatesh, S. Vignesh, M. Srinivasan et al., Colloids Surf. A Physicochem. Eng. Asp. (2021). https://doi.org/10.1016/j.colsurfa.2021.127523

    Article  Google Scholar 

  30. J.W. Liu, G. Chen, Z.H. Li, Z.G. Zhang, J. Solid State Chem. 179, 3704 (2006). https://doi.org/10.1016/j.jssc.2006.08.014

    Article  CAS  Google Scholar 

  31. Y. Jia, D. Zhao, M. Li, H. Han, C. Li, Chin. J. Catal. 39, 421 (2018). https://doi.org/10.1016/s1872-2067(18)63027-x

    Article  CAS  Google Scholar 

  32. Z. Cao, C. Wang, J. Chen, Mater. Res. Express 5, 115512 (2018). https://doi.org/10.1088/2053-1591/aadec0

    Article  CAS  Google Scholar 

  33. S. Selvarajan, P. Malathy, A. Suganthi, M. Rajarajan, J. Ind. Eng. Chem. 53, 201 (2017). https://doi.org/10.1016/j.jiec.2017.04.026

    Article  CAS  Google Scholar 

  34. M. Li, S. Wang, H. Gao et al., J. Am. Ceram. Soc. 106, 2420 (2022). https://doi.org/10.1111/jace.18946

    Article  CAS  Google Scholar 

  35. N. Yahya, F. Aziz, J. Jaafar et al., Arab. J. Sci. Eng. 46, 6153 (2020). https://doi.org/10.1007/s13369-020-04874-z

    Article  CAS  Google Scholar 

  36. S. Wang, M. Li, H. Gao et al., Appl. Surf. Sci. (2023). https://doi.org/10.1016/j.apsusc.2022.154977

    Article  Google Scholar 

  37. Y. Deng, S. Shu, N. Fang et al., Chin. Chem. Lett. (2023). https://doi.org/10.1016/j.cclet.2022.03.046

    Article  Google Scholar 

  38. J. Wang, T. Fang, S. Yan, Z. Li, T. Yu, Z. Zou, Comput. Mater. Sci. 79, 87 (2013). https://doi.org/10.1016/j.commatsci.2013.06.001

    Article  CAS  Google Scholar 

  39. Y. Jia, S. Shen, D. Wang et al., J. Mater. Chem. A (2013). https://doi.org/10.1039/c3ta11326d

    Article  Google Scholar 

  40. Z. Jiang, J. Pan, B. Wang, C. Li, Appl. Surf. Sci. 436, 519 (2018). https://doi.org/10.1016/j.apsusc.2017.12.065

    Article  CAS  Google Scholar 

  41. Z. Dong, J. Pan, B. Wang et al., J. Alloys Compd. 747, 788 (2018). https://doi.org/10.1016/j.jallcom.2018.03.112

    Article  CAS  Google Scholar 

  42. X. Gao, J. Niu, Y. Wang, Y. Ji, Y. Zhang, J. Hazard. Mater. 403, 123860 (2021). https://doi.org/10.1016/j.jhazmat.2020.123860

    Article  CAS  Google Scholar 

  43. X.-J. Wen, C.-G. Niu, L. Zhang, C. Liang, H. Guo, G.-M. Zeng, J. Catal. 358, 141 (2018). https://doi.org/10.1016/j.jcat.2017.11.029

    Article  CAS  Google Scholar 

  44. M. Abdi, V. Mahdikhah, S. Sheibani, Opt. Mater. (2020). https://doi.org/10.1016/j.optmat.2020.109803

    Article  Google Scholar 

  45. N.P. Bhagya, P.A. Prashanth, R.H. krishna, B.M. Nagabhushana, R.S. Raveendra, Optik 145, 678 (2017). https://doi.org/10.1016/j.ijleo.2017.07.003

    Article  CAS  Google Scholar 

  46. Z. Youssef, L. Colombeau, N. Yesmurzayeva et al., Dyes Pigm. 159, 49 (2018). https://doi.org/10.1016/j.dyepig.2018.06.002

    Article  CAS  Google Scholar 

  47. H. Gao, H. Yang, S. Wang, Optik 175, 237 (2018). https://doi.org/10.1016/j.ijleo.2018.09.027

    Article  CAS  Google Scholar 

  48. S. Wang, H. Gao, X. Yu et al., J. Mater. Sci. 31, 17736 (2020). https://doi.org/10.1007/s10854-020-04328-0

    Article  CAS  Google Scholar 

  49. S. Ma, D. Chen, Y. Zhong et al., Chem. Eng. J. (2023). https://doi.org/10.1016/j.cej.2023.143385

    Article  Google Scholar 

  50. H. Zheng, G. Chen, A. Zhang et al., Sep. Purif. Technol. (2021). https://doi.org/10.1016/j.seppur.2020.118296

    Article  Google Scholar 

  51. P. Reunchan, S. Ouyang, N. Umezawa, H. Xu, Y. Zhang, J. Ye, J. Mater. Chem. A (2013). https://doi.org/10.1039/c2ta00450j

    Article  Google Scholar 

  52. H.-C. Chen, C.-W. Huang, J.C.S. Wu, S.-T. Lin, J. Phys. Chem. C 116, 7897 (2012). https://doi.org/10.1021/jp300910e

    Article  CAS  Google Scholar 

  53. F. Ichihara, F. Sieland, H. Pang et al., J. Phys. Chem. C 124, 1292 (2019). https://doi.org/10.1021/acs.jpcc.9b09324

    Article  CAS  Google Scholar 

  54. F. Cai, Y. Tang, F. Chen, Y. Yan, W. Shi, RSC Adv. 5, 21290 (2015). https://doi.org/10.1039/c4ra13821j

    Article  CAS  Google Scholar 

  55. P. Reunchan, N. Umezawa, S. Ouyang, J. Ye, Phys. Chem. Chem. Phys. 14, 1876 (2012). https://doi.org/10.1039/c2cp23348g

    Article  CAS  Google Scholar 

  56. J. Hui, G. Zhang, C. Ni, J.T.S. Irvine, Chem. Commun. 53, 10038 (2017). https://doi.org/10.1039/c7cc05144a

    Article  CAS  Google Scholar 

  57. M. Sundararajan, V. Sailaja, L.J. Kennedy, J. Judith Vijaya, Ceram. Int. 43, 540 (2017). https://doi.org/10.1016/j.ceramint.2016.09.191

    Article  CAS  Google Scholar 

  58. M. Sundararajan, L. John Kennedy, P. Nithya, J. Judith Vijaya, M. Bououdina, J. Phys. Chem. Solids 108, 61 (2017). https://doi.org/10.1016/j.jpcs.2017.04.002

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (No. 2022YFC3700326).

Funding

The research leading to these results received funding from the National Key Research and Development Program of China under Grant Agreement No. 2022YFC3700326.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by KD. The first draft of the manuscript was written by KD and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Hui Fan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Research involving human participants and/or animals

This article does not contain any studies with human participants performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, K., Fan, H., He, Z. et al. La and Cr co-doped SrTiO3 prepared by citric-combustion method for photocatalytic degradation of antibiotics under visible-light. J Mater Sci: Mater Electron 34, 1653 (2023). https://doi.org/10.1007/s10854-023-11026-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-11026-0

Navigation