Skip to main content

Advertisement

Log in

Synthesis, mechanism and characterization of SiO2/BiOX (X = Br, Cl): efficient photocatalytic degradation of various antibiotics under visible-light irradiation

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

BiOXs (X = Br, Cl, I, F) are extensively used visible-light-driven photocatalysts and used widely, but except for BiOF, they exhibit an indirect bandgap, and electrons need to cross the K layer to enter the conduction band, which greatly reduces electron–hole complexation. To enhance the photocatalytic activity of BiOXs, we prepared a series of BiOXs materials modified with mesoporous SiO2 using a hybrid solvothermal method with microwave assistance. It was demonstrated using XRD, SEM, XPS, UV–vis DRS, and PL methods that the two-dimensional layered BiOXs were successfully complexed with mesoporous SiO2 forming highly active photocatalysts. Under simulated visible-light conditions, the SiO2/BiOXs materials showed very high degradation efficiency for ofloxacin (OFL) and tetracycline hydrochloride (TCH). The photocatalytic degradation efficiency of both SiO2/BiOCl and SiO2/BiOBr for OFL and TCH was up to 100%. The enhanced activity of the photocatalyst was attributed to the formation of a heterogeneous interface between mesoporous SiO2 and two-dimensional layered bismuth halide oxides, thus improving the separation rate of photogenerated carriers. The introduction of mesoporous SiO2 provided more adsorption sites and active sites for antibiotic molecules improving the adsorption performance of BiOX. In addition, the quenching experiments showed that ·O2 was the main reactant for OFL and TCH. This study demonstrates feasible preparation of low-cost, simple, and efficient photocatalysts, offering promising application potential for photocatalytic degradation of antibiotic contaminants in water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1.
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The authors confirm that the data supporting the fundings of this study are available the article.

References

  1. K. Kumar, S.C. Gupta, Y. Chander, A.K. Singh, Antibiotic use in agriculture and its impact on the terrestrial environment. Adv. Agron. (2005). https://doi.org/10.1016/s0065-2113(05)87001-4

    Article  Google Scholar 

  2. S. Li, W. Shi, W. Liu, H. Li, W. Zhang, J. Hu, Y. Ke, W. Sun, J. Ni, A duodecennial national synthesis of antibiotics in China’s major rivers and seas (2005–2016). Sci. Total Environ. 615, 906–917 (2018). https://doi.org/10.1016/j.scitotenv.2017.09.328

    Article  CAS  Google Scholar 

  3. H. Liu, X. Zhou, H. Huang, J. Zhang, Prevalence of antibiotic resistance genes and their association with antibiotics in a wastewater treatment plant: process distribution and analysis. Water 11, 12 (2019). https://doi.org/10.3390/w11122495

    Article  CAS  Google Scholar 

  4. J. Radjenovic, M. Petrovic, D. Barcelo, Fate and distribution of pharmaceuticals in wastewater and sewage sludge of the conventional activated sludge (CAS) and advanced membrane bioreactor (MBR) treatment. Water Res. 43(3), 831–841 (2009). https://doi.org/10.1016/j.watres.2008.11.043

    Article  CAS  Google Scholar 

  5. T. Deblonde, C. Cossu-Leguille, P. Hartemann, Emerging pollutants in wastewater: a review of the literature. Int. J. Hyg. Environ. Health 214(6), 442–448 (2011). https://doi.org/10.1016/j.ijheh.2011.08.002

    Article  CAS  Google Scholar 

  6. K.G. Karthikeyan, M.T. Meyer, Occurrence of antibiotics in wastewater treatment facilities in Wisconsin, USA. Sci. Total Environ. 361(1–3), 196–207 (2006). https://doi.org/10.1016/j.scitotenv.2005.06.030

    Article  CAS  Google Scholar 

  7. A.J. Watkinson, E.J. Murby, S.D. Costanzo, Removal of antibiotics in conventional and advanced wastewater treatment: implications for environmental discharge and wastewater recycling. Water Res. 41(18), 4164–4176 (2007). https://doi.org/10.1016/j.watres.2007.04.005

    Article  CAS  Google Scholar 

  8. H. Ilyas, E. van Hullebusch, Role of design and operational factors in the removal of pharmaceuticals by constructed wetlands. Water (2019). https://doi.org/10.3390/w11112356

    Article  Google Scholar 

  9. C.B. Chidambara Raj, H. Li Quen, Advanced oxidation processes for wastewater treatment: Optimization of UV/H2O2 process through a statistical technique. Chem. Eng. Sci 60(19), 5305–5311 (2005). https://doi.org/10.1016/j.ces.2005.03.065

    Article  CAS  Google Scholar 

  10. Z. Cai, A.D. Dwivedi, W.-N. Lee, X. Zhao, W. Liu, M. Sillanpää, D. Zhao, C.-H. Huang, J. Fu, Application of nanotechnologies for removing pharmaceutically active compounds from water: development and future trends. Environ. Sci. Nano 5(1), 27–47 (2018). https://doi.org/10.1039/c7en00644f

    Article  CAS  Google Scholar 

  11. Y. Liu, W.J. Son, J. Lu, B. Huang, Y. Dai, M.H. Whangbo, Composition dependence of the photocatalytic activities of BiOCl(1–x)Br(x) solid solutions under visible light. Chemistry 17(34), 9342–9349 (2011). https://doi.org/10.1002/chem.201100952

    Article  CAS  Google Scholar 

  12. M. Jia, X. Hu, S. Wang, Y. Huang, L. Song, Photocatalytic properties of hierarchical BiOXs obtained via an ethanol-assisted solvothermal process. J. Environ. Sci. (China) 35, 172–180 (2015). https://doi.org/10.1016/j.jes.2014.09.045

    Article  CAS  Google Scholar 

  13. X. Zhang, Z.H. Ai, F.L. Jia, L.Z. Zhang, Generalized one-pot synthesis, characterization, and photocatalytic activity of hierarchical BiOX (X = Cl, Br, I) nanoplate microspheres. J. Phys Chem. C 112(3), 747–753 (2008). https://doi.org/10.1021/jp077471t

    Article  CAS  Google Scholar 

  14. J. Pan, J. Liu, S. Zuo, U.A. Khan, Y. Yu, B. Li, Structure of Z-scheme CdS/CQDs/BiOCl heterojunction with enhanced photocatalytic activity for environmental pollutant elimination. Appl. Surf. Sci 444, 177–186 (2018). https://doi.org/10.1016/j.apsusc.2018.01.189

    Article  CAS  Google Scholar 

  15. X. Zhang, B. Li, J. Wang, Y. Yuan, Q. Zhang, Z. Gao, L.M. Liu, L. Chen, The stabilities and electronic structures of single-layer bismuth oxyhalides for photocatalytic water splitting. Phys. Chem. Chem. Phys. 16(47), 25854–25861 (2014). https://doi.org/10.1039/c4cp03166k

    Article  CAS  Google Scholar 

  16. Q. Zhang, J.F. Mao, W.K. Pang, T. Zheng, V. Sencadas, Y.Z. Chen, Y.J. Liu, Z.P. Guo, Boosting the potassium storage performance of alloy-based anode materials via electrolyte salt chemistry. Adv. Energy Mater. (2018). https://doi.org/10.1002/aenm.201703288

    Article  Google Scholar 

  17. L.C. Lee, T.N. Huq, J.L. MacManus-Driscoll, R.L.Z. Hoye, Research update: Bismuth-based perovskite-inspired photovoltaic materials. APL Mater. (2018). https://doi.org/10.1063/1.5029484

    Article  Google Scholar 

  18. C. Wu, Q. Zhang, G. Liu, Z. Zhang, D. Wang, B. Qu, Z. Chen, L. Xiao, From Pb to Bi: a promising family of pb-free optoelectronic materials and devices. Adv. Energy Mater. (2019). https://doi.org/10.1002/aenm.201902496

    Article  Google Scholar 

  19. L. Zhang, K. Wang, B. Zou, Bismuth halide perovskite-like materials: current opportunities and challenges. Chemsuschem 12(8), 1612–1630 (2019). https://doi.org/10.1002/cssc.201802930

    Article  CAS  Google Scholar 

  20. Z. Wang, M. Chen, D. Huang, G. Zeng, P. Xu, C. Zhou, C. Lai, H. Wang, M. Cheng, W. Wang, Multiply structural optimized strategies for bismuth oxyhalide photocatalysis and their environmental application. Chem. Eng. J Prog 374, 1025–1045 (2019). https://doi.org/10.1016/j.cej.2019.06.018

    Article  CAS  Google Scholar 

  21. H. Zhang, L. Liu, Z. Zhou, Towards better photocatalysts: first-principles studies of the alloying effects on the photocatalytic activities of bismuth oxyhalides under visible light. Phys. Chem. Chem. Phys. 14(3), 1286–1292 (2012). https://doi.org/10.1039/c1cp23516h

    Article  CAS  Google Scholar 

  22. X. Wu, G. Li, Z. Leng, S. Wang, N. Zhang, Y. Wang, J. Li, L. Li, Effect of alloyed BiOClxBr1-x nanosheets thickness on the photocatalytic performance. Chem. Select 4(5), 1757–1762 (2019). https://doi.org/10.1002/slct.201803935

    Article  CAS  Google Scholar 

  23. X. Jin, L. Ye, H. Wang, Y. Su, H. Xie, Z. Zhong, H. Zhang, Bismuth-rich strategy induced photocatalytic molecular oxygen activation properties of bismuth oxyhalogen: the case of Bi24O31Cl10. Appl. Catal. B Environ 165, 668–675 (2015). https://doi.org/10.1016/j.apcatb.2014.10.075

    Article  CAS  Google Scholar 

  24. J. Xiong, P. Song, J. Di, H. Li, Bismuth-rich bismuth oxyhalides: a new opportunity to trigger high-efficiency photocatalysis. J. Mater. Chem. A 8(41), 21434–21454 (2020). https://doi.org/10.1039/d0ta06044e

    Article  CAS  Google Scholar 

  25. M. Guan, C. Xiao, J. Zhang, S. Fan, R. An, Q. Cheng, J. Xie, M. Zhou, B. Ye, Y. Xie, Vacancy associates promoting solar-driven photocatalytic activity of ultrathin bismuth oxychloride nanosheets. J. Am. Chem. Soc. 135(28), 10411–10417 (2013). https://doi.org/10.1021/ja402956f

    Article  CAS  Google Scholar 

  26. H. Wang, D. Yong, S. Chen, S. Jiang, X. Zhang, W. Shao, Q. Zhang, W. Yan, B. Pan, Y. Xie, Oxygen-vacancy-mediated exciton dissociation in BiOBr for boosting charge-carrier-involved molecular oxygen activation. J. Am. Chem. Soc 140(5), 1760–1766 (2018). https://doi.org/10.1021/jacs.7b10997

    Article  CAS  Google Scholar 

  27. W.T. Li, W.Z. Huang, H. Zhou, H.Y. Yin, Y.F. Zheng, X.C. Song, Synthesis of Zn2+ doped BiOCl hierarchical nanostructures and their exceptional visible light photocatalytic properties. J. Alloys Compd. 638, 148–154 (2015). https://doi.org/10.1016/j.jallcom.2015.03.103

    Article  CAS  Google Scholar 

  28. M. Gao, D. Zhang, X. Pu, H. Li, W. Li, X. Shao, D. Lv, B. Zhang, J. Dou, Combustion synthesis of Fe-doped BiOCl with high visible-light photocatalytic activities. Sep. Purif. Technol 162, 114–119 (2016). https://doi.org/10.1016/j.seppur.2016.02.024

    Article  CAS  Google Scholar 

  29. X. Han, S. Dong, C. Yu, Y. Wang, K. Yang, J. Sun, Controllable synthesis of Sn-doped BiOCl for efficient photocatalytic degradation of mixed-dye wastewater under natural sunlight irradiation. J. Alloys Compd. 685, 997–1007 (2016). https://doi.org/10.1016/j.jallcom.2016.06.298

    Article  CAS  Google Scholar 

  30. J. Cao, B. Xu, H. Lin, B. Luo, S. Chen, Novel heterostructured Bi2S3/BiOI photocatalyst: facile preparation, characterization and visible light photocatalytic performance. Dalton Trans. 41(37), 11482–11490 (2012). https://doi.org/10.1039/c2dt30883e

    Article  CAS  Google Scholar 

  31. L. Sun, L. Xiang, X. Zhao, C.-J. Jia, J. Yang, Z. Jin, X. Cheng, W. Fan, Enhanced visible-light photocatalytic activity of BiOI/BiOCl heterojunctions: key role of crystal facet combination. ACS Catal. 5(6), 3540–3551 (2015). https://doi.org/10.1021/cs501631n

    Article  CAS  Google Scholar 

  32. J.C. Wang, H.C. Yao, Z.Y. Fan, L. Zhang, J.S. Wang, S.Q. Zang, Z.J. Li, Indirect Z-scheme BiOI/g-C3N4 photocatalysts with enhanced photoreduction CO2 activity under visible light irradiation. ACS Appl. Mater. Interfaces 8(6), 3765–3775 (2016). https://doi.org/10.1021/acsami.5b09901

    Article  CAS  Google Scholar 

  33. W. Li, X. Jia, P. Li, B. Zhang, H. Zhang, W. Geng, Q. Zhang, Hollow mesoporous SiO2–BiOBr nanophotocatalyst: synthesis, characterization and application in photodegradation of organic dyes under visible-light irradiation. ACS Sustain. Chem. Eng 3(6), 1101–1110 (2015). https://doi.org/10.1021/acssuschemeng.5b00033

    Article  CAS  Google Scholar 

  34. F. Shen, L. Zhou, J. Shi, M. Xing, J. Zhang, Preparation and characterization of SiO2/BiOX (X = Cl, Br, I) films with high visible-light activity. RSC Adv. 5(7), 4918–4925 (2015). https://doi.org/10.1039/c4ra10227d

    Article  CAS  Google Scholar 

  35. Y.R. Yao, W.Z. Huang, H. Zhou, H.Y. Yin, Y.F. Zheng, X.C. Song, A novel Fe3O4@SiO2@BiOBr photocatalyst with highly active visible light photocatalytic properties. Mater. Chem. Phys 148(3), 896–902 (2014). https://doi.org/10.1016/j.matchemphys.2014.08.067

    Article  CAS  Google Scholar 

  36. M. Khan, C.S.L. Fung, A. Kumar, J. He, I.M.C. Lo, Unravelling mechanistic reasons for differences in performance of different Ti- and Bi-based magnetic photocatalysts in photocatalytic degradation of PPCPs. Sci. Total Environ. 686, 878–887 (2019). https://doi.org/10.1016/j.scitotenv.2019.05.340

    Article  CAS  Google Scholar 

  37. X. Ji, L. Ge, C. Liu, Z. Tang, Y. Xiao, W. Chen, Z. Lei, W. Gao, S. Blake, D. De, B. Shi, X. Zeng, N. Kong, X. Zhang, W. Tao, Capturing functional two-dimensional nanosheets from sandwich-structure vermiculite for cancer theranostics. Nat. Commun. 12(1), 1124 (2021). https://doi.org/10.1038/s41467-021-21436-5

    Article  CAS  Google Scholar 

  38. X. Zhang, L.W. Wang, C.Y. Wang, W.K. Wang, Y.L. Chen, Y.X. Huang, W.W. Li, Y.J. Feng, H.Q. Yu, Synthesis of BiOClxBr1–x nanoplate solid solutions as a robust photocatalyst with tunable band structure. Chemistry 21(33), 11872–11877 (2015). https://doi.org/10.1002/chem.201501427

    Article  CAS  Google Scholar 

  39. M. Hu, R. Li, X. Zhang, C. Zhang, H. Zhang, C. Fan, J. Zhu, HCl post-processing BiOBr photocatalyst: structure, morphology, and composition and their impacts to activity. RSC Adv. 7(79), 50079–50086 (2017). https://doi.org/10.1039/c7ra08871j

    Article  CAS  Google Scholar 

  40. G. Liu, H. Xu, D. Li, Z. Zou, Q. Li, D. Xia, BiOCl/BiOBr heterojunction with rich oxygen vacancies induced by ultraviolet and its enhanced photocatalytic performance. Eur. J. Inorg. Chem 2019(46), 4887–4893 (2019). https://doi.org/10.1002/ejic.201900948

    Article  CAS  Google Scholar 

  41. C. Zhao, Y. Liang, W. Li, X. Chen, Y. Tian, D. Yin, Q. Zhang, 3D BiOBr/BiOCl heterostructure microspheres with enhanced photocatalytic activity. J. Mater. Sci. Mater. Electron 31(3), 1868–1878 (2019). https://doi.org/10.1007/s10854-019-02706-x

    Article  CAS  Google Scholar 

  42. W. Maisang, S. Promnopas, S. Kaowphong, S. Narksitipan, S. Thongtem, S. Wannapop, A. Phuruangrat, T. Thongtem, Microwave-assisted hydrothermal synthesis of BiOBr/BiOCl flowerlike composites used for photocatalysis. Res. Chem. Intermed 46(4), 2117–2135 (2020). https://doi.org/10.1007/s11164-020-04082-2

    Article  CAS  Google Scholar 

  43. M. Thommes, K. Kaneko, A.V. Neimark, J.P. Olivier, F. Rodriguez-Reinoso, J. Rouquerol, K.S.W. Sing, Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl. Chem 87(9–10), 1051–1069 (2015). https://doi.org/10.1515/pac-2014-1117

    Article  CAS  Google Scholar 

  44. S.J. Zhang, J.F. Yang, Microwave-assisted synthesis of BiOCl/BiOBr composites with improved visible-light photocatalytic activity. Ind. Eng. Chem. Res 54(41), 9913–9919 (2015). https://doi.org/10.1021/acs.iecr.5b02332

    Article  CAS  Google Scholar 

  45. V. Bhatia, A.K. Ray, A. Dhir, Enhanced photocatalytic degradation of ofloxacin by co-doped titanium dioxide under solar irradiation. Sep. Purif. Technol 161, 1–7 (2016). https://doi.org/10.1016/j.seppur.2016.01.028

    Article  CAS  Google Scholar 

  46. A. Kaur, A. Umar, W.A. Anderson, S.K. Kansal, Facile synthesis of CdS/TiO2 nanocomposite and their catalytic activity for ofloxacin degradation under visible illumination. J. Photoch. Photobio. A 360, 34–43 (2018). https://doi.org/10.1016/j.jphotochem.2018.04.021

    Article  CAS  Google Scholar 

  47. H. Bouyarmane, C. El Bekkali, J. Labrag, I. Es-saidi, O. Bouhnik, H. Abdelmoumen, A. Laghzizil, J.M. Nunzi, D. Robert, Photocatalytic degradation of emerging antibiotic pollutants in waters by TiO2/Hydroxyapatite nanocomposite materials. Surf. Interfaces (2021). https://doi.org/10.1016/j.surfin.2021.101155

    Article  Google Scholar 

  48. H. Jia, D. Ma, S. Zhong, L. Li, L. Li, L. Xu, B. Li, Boosting photocatalytic activity under visible-light by creation of PCN-222/g-C3N4 heterojunctions. Chem. Eng. J. 368, 165–174 (2019). https://doi.org/10.1016/j.cej.2019.02.147

    Article  CAS  Google Scholar 

  49. M.V. Mamba, 1D/2D MnWO4 nanorods anchored on g-C3N4 nanosheets for enhanced photocatalytic degradation ofloxacin under visible light irradiation. Colloids Surf A (2019). https://doi.org/10.1016/j.colsurfa.2019.123845

    Article  Google Scholar 

  50. D. Zhang, J. Qi, H. Ji, S. Li, L. Chen, T. Huang, C. Xu, X. Chen, W. Liu, Photocatalytic degradation of ofloxacin by perovskite-type NaNbO3 nanorods modified g-C3N4 heterojunction under simulated solar light: Theoretical calculation, ofloxacin degradation pathways and toxicity evolution. Chem. Eng. J (2020). https://doi.org/10.1016/j.cej.2020.125918

    Article  Google Scholar 

  51. P. Praus, A. Smýkalová, K. Foniok, V. Novák, J. Hrbáč, Doping of graphitic carbon nitride with oxygen by means of cyanuric acid: Properties and photocatalytic applications. J. Environ. Chem. Eng 9, 4 (2021). https://doi.org/10.1016/j.jece.2021.105498

    Article  CAS  Google Scholar 

  52. H. Yin, H. Shi, L. Sun, D. Xia, X. Yuan, Construction of Ag2O-modified g-C3N4 photocatalyst for rapid visible light degradation of ofloxacin. Environ. Sci. Pollut. Res. Int. 28(9), 11650–11664 (2021). https://doi.org/10.1007/s11356-020-11390-y

    Article  CAS  Google Scholar 

  53. S. Adhikari, D.-H. Kim, Synthesis of Bi2S3/Bi2WO6 hierarchical microstructures for enhanced visible light driven photocatalytic degradation and photoelectrochemical sensing of ofloxacin. Chem. Eng. J 354, 692–705 (2018). https://doi.org/10.1016/j.cej.2018.08.087

    Article  CAS  Google Scholar 

  54. Q. Hao, X. Niu, C. Nie, S. Hao, W. Zhou, J. Ge, D. Chen, W. Yao, Highly efficient g-C3N4/SiO2 heterojunction: the role of SiO2 for the enhanced visible light photocatalytic activity. Phys. Chem. Chem. Phys. 18(46), 31410–31418 (2016). https://doi.org/10.1039/c6cp06122b

    Article  CAS  Google Scholar 

  55. L. Li, M. Zhang, Y. Liu, X. Zhang, Hierarchical assembly of BiOCl nanosheets onto bicrystalline TiO2 nanofiber: enhanced photocatalytic activity based on photoinduced interfacial charge transfer. J. Colloid Interface Sci 435, 26–33 (2014). https://doi.org/10.1016/j.jcis.2014.08.022

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Thanks for the contribution of everyone in our research team.

Author information

Authors and Affiliations

Authors

Contributions

ZP: formulation and evolution of overarching research goals and aims, writing-review & editing. HG: writing-original draft, development and design of methodology, investigation. JX: investigation, visualization, data curation. ZF: investigation, visualization, data curation. CL: Supervision. LZ: investigation. WC: investigation.

Corresponding author

Correspondence to Zhenzhao Pei.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 265 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pei, Z., Guo, H., Xu, J. et al. Synthesis, mechanism and characterization of SiO2/BiOX (X = Br, Cl): efficient photocatalytic degradation of various antibiotics under visible-light irradiation. J Mater Sci: Mater Electron 33, 21497–21511 (2022). https://doi.org/10.1007/s10854-022-08941-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-08941-z

Navigation