Skip to main content
Log in

Preparation and properties of quinoxaline and pyrazine D (donor)–A (acceptor) conductive polymer lithium-ion battery anode materials

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The low specific capacity of conventional conductive polymer electrode materials is a limitation for their application in lithium-ion batteries (LIBs). However, the D (donor)-A (acceptor) conductive polymer, consisting of alternating arrangements of donor and acceptor units, possesses excellent electrochemical properties and is suitable as the anode material for LIBs. As a result, using the thiophene group as the donor unit, and the quinoxaline group and pyrazine group as the acceptor units, respectively, 8,10-di(thiophen-2-yl)trithieno[3,4-b:3′,2′-f:2″,3″-h]quinoxaline (TTQ) monomer and 5,7-di(thiophen-2-yl)-2,3-di(thiophen-3-yl)thieno[3,4-b]pyrazine (TTP) monomer were synthesized. After the in situ polymerization of TTQ and TTP monomers on the surface of activated carbon (AC), PTTQ@AC and PTTP@AC composite electrode materials were obtained. The discharge specific capacity of PTTQ@AC and PTTP@AC was 281.2 and 234.7 mAh g−1, respectively, after 600 cycles at a current density of 100 mA g−1, superior to that of conventional conductive polymer electrodes. The specific capacity was better in PTTQ than in PTTP. One reason is that PTTQ has greater rigidity and coplanarity than PTTP. In addition, PTTQ’s lower LUMO and higher HOMO energy levels, as well as its narrower Eg, result in more favorable redox properties and conductivity. D-A conductive polymers have a great potential as electrode materials for high-capacity LIBs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

Data will be made available on request.

References

  1. M. Armand, J.M. Tarascon, Building better batteries. Nature. 451, 652–657 (2008)

    Article  CAS  Google Scholar 

  2. V. Etacheri, R. Marom, R. Elazari, G. Salitra, D. Aurbach, Challenges in the development of advanced Li-ion batteries: a review. Energy Environ. Sci. 4, 3243–3262 (2011)

    Article  CAS  Google Scholar 

  3. G. Nyström, A. Razaq, M. Strømme, L. Nyholm, A. Mihranyan, Ultrafast all-polymer paper-based batteries. Nano Lett. 9, 3635–3639 (2009)

    Article  Google Scholar 

  4. M. Wang, C. Li, J. Zhao, A. Li, B. Liang, Synthesis of D-A-Type polymers containing thieno[3,2-b]thiophene unit, their composites with carbon, and lithium storage performance as anode materials. Coatings 12, 1912 (2022)

    Article  CAS  Google Scholar 

  5. Q. Lu, L. Kong, B. Liang, J. Zhao, Hard carbon derived from a new type resorcinol/2-thenaldehyde resin as high-performance anode materials for lithium-ion batteries. Int. J. Electrochem. Sci. 17, 221274 (2022)

    Article  CAS  Google Scholar 

  6. S. Chuhadiya, D. Himanshu, S.L. Suthar, M.S. Patel, Dhaka, Metal organic frameworks as hybrid porous materials for energy storage and conversion devices: a review, Coord. Chem. Rev. 446, 214115 (2021)

    CAS  Google Scholar 

  7. T. Wei, P. Peng, Y. Ji, Y. Zhu, T. Yi, Y. Xie, Rational construction and decoration of Li5Cr7Ti6O25@C nanofibers as stable lithium storage materials. J. Energy Chem. 71, 400–410 (2022)

    Article  CAS  Google Scholar 

  8. H. Chang, Y. Guo, X. Liu, P. Wang, Y. Xie, T. Yi, Dual MOF-derived Fe/N/P-tridoped carbon nanotube as high-performance oxygen reduction catalysts for zinc-air batteries. Appl. Catal. B-Environ. 327, 122469 (2023)

    Article  CAS  Google Scholar 

  9. T. Wei, X. Liu, S. Yang, P. Wang, T. Yi, Regulating the electrochemical activity of Fe-Mn-Cu-based layer oxides as cathode materials for high-performance Na-ion battery. J. Energy Chem. 80, 603–613 (2023)

    Article  CAS  Google Scholar 

  10. W. Du, X. Du, M. Ma, S. Huang, X. Sun, L. Xiong, Polymer electrode materials for lithium-ion batteries. Adv. Funct. Mater. 32, 2110871 (2022)

    Article  CAS  Google Scholar 

  11. P.J. Nigrey, D. Macinnes, D.P. Nairns, A.G. Macdiarmid, A.J. Heeger, Lightweight rechargeable storage batteries using polyacetylene, (CH)x as the cathode-active material. J. Electrochem. Soc. 128, 1651–1654 (2019)

    Article  Google Scholar 

  12. L.M. Zhu, A.W. Lei, Y.L. Cao, X.P. Ai, H.X. Yang, An all-organic rechargeable battery using bipolar polyparaphenylene as a redox-active cathode and anode. Chem. Commun. 49, 567–569 (2013)

    Article  CAS  Google Scholar 

  13. J.J. Shea, C. Luo, Organic electrode materials for metal ion batteries. ACS Appl. Mater. Interfaces. 12, 5361–5380 (2020)

    Article  CAS  Google Scholar 

  14. P. Acker, M.E. Speer, J.S. Wössner, B. Esser, Azine-based polymers with a two-electron redox process as cathode materials for organic batteries. J. Mater. Chem. A 8, 11195–11201 (2020)

    Article  CAS  Google Scholar 

  15. X. Zhao, C. Wang, Z. Li, X. Hu, A. Abdul Razzaq, Z. Deng, Sulfurized polyacrylonitrile for high-performance lithium sulfur batteries: advances and prospects. J. Mater. Chem. A 9, 19282–19297 (2021)

    Article  CAS  Google Scholar 

  16. Z. Shadike, S. Tan, Q. Wang, R. Lin, E. Hu, D. Qu, X. Yang, Review on organosulfur materials for rechargeable lithium batteries. Mater. Horizons. 8, 471–500 (2021)

    Article  CAS  Google Scholar 

  17. H. Chen, C. Xu, Y. Zhang, M. Cao, H. Dou, X. Zhang, Successive cationic and anionic(de)-intercalation/incorporation into an ion-doped radical conducting polymer. Batteries Supercaps. 2, 979–984 (2019)

    Article  CAS  Google Scholar 

  18. Y. Xie, K. Zhang, M.J. Monteiro, Z. Jia, Conjugated nitroxide radical polymers: synthesis and application in flexible energy storage devices. ACS Appl. Mater. Interfaces. 11, 7096–7103 (2019)

    Article  CAS  Google Scholar 

  19. L. Ao, C. Wu, X. Wang, Y. Xu, K. Jiang, L. Shang, Y. Li, J. Zhang, Z. Hu, J. Chu, Superior and reversible lithium storage of SnO2/graphene composites by silicon doping and carbon sealing. ACS Appl. Mater. Interfaces. 12, 20824–20837 (2020)

    Article  CAS  Google Scholar 

  20. L. Assumma, Y. Kervella, J.M. Mouesca, M. Mendez, V. Maurel, L. Dubois, T. Gutel, S. Sadki, A new conducting copolymer bearing electro-active nitroxide groups as organic electrode materials for batteries. ChemSusChem 13, 2419–2427 (2020)

    Article  CAS  Google Scholar 

  21. Z. Song, Y. Qian, M.L. Gordin, D. Tang, T. Xu, M. Otani, H. Zhan, H. Zhou, D. Wang, Polyanthraquinone as a reliable organic electrode for stable and fast lithium storage. Angew Chem. Int. Ed. 54, 13947–13951 (2015)

    Article  CAS  Google Scholar 

  22. C. Direksilp, A. Sirivat, Synthesis and characterization of hollow-sphered poly(N-methyaniline) for enhanced electrical conductivity based on the anionic surfactant templates and doping. Polymers. 12, 1023 (2020)

    Article  CAS  Google Scholar 

  23. T. Yuan, J. Ruan, W. Zhang, Z. Tan, J. Yang, Z. Ma, S. Zheng, Flexible overoxidized polypyrrole films with orderly structure as high-performance anodes for Li- and Na-ion batteries. ACS Appl. Mater. Interfaces. 8, 35114–35122 (2016)

    Article  CAS  Google Scholar 

  24. N. Xu, S. Mei, Z. Chen, Y. Dong, W. Li, C. Zhang, High-performance Li-organic battery based on thiophene-containing porous organic polymers with different morphology and surface area as the anode materials. Chem. Eng. J. 395, 124975 (2020)

    Article  CAS  Google Scholar 

  25. T. Yi, L. Qiu, J. Mei, S. Qi, P. Cui, S. Luo, Y. Zhu, Y. Xie, Y. He, Porous spherical NiO@NiMoO4@PPy nanoarchitectures as advanced electrochemical pseudocapacitor materials. Sci. Bull. 65, 546–556 (2020)

    Article  CAS  Google Scholar 

  26. H. Yang, T. Song, L. Liu, A. Devadoss, F. Xia, H. Han, H. Park, W. Sigmund, K. Kwon, U. Paik, Polyaniline/polyoxometalate hybrid nanofibers as cathode for lithium ion batteries with improved lithium storage capacity. J. Phys. Chem. C 117, 17376–17381 (2013)

    Article  CAS  Google Scholar 

  27. P. Jiménez, E. Levillain, O. Alévêque, D. Guyomard, B. Lestriez, J. Gaubicher, Lithium N-doped polyaniline as a high-performance electroactive material for rechargeable batteries. Angew Chem. Int. Ed. 56, 1553–1556 (2017)

    Article  Google Scholar 

  28. H. Numazawa, K. Sato, H. Imai, Y. Oaki, Multistage redox reactions of conductive-polymer nanostructures with lithium ions: potential for high-performance organic anodes. NPG Asia Mater. 10, 397–405 (2018)

    Article  CAS  Google Scholar 

  29. Y. Yang, C. Wang, S. Ashraf, G.G. Wallace, Polypyrrole doped with redox-active poly(2-methoxyaniline-5-sulfonic acid) for lithium secondary batteries. RSC Adv. 3, 5447–5452 (2013)

    Article  CAS  Google Scholar 

  30. K.S. Park, S.B. Schougaard, J.B. Goodenough, Conducting-polymer/iron-redox-couple composite cathodes for lithium secondary batteries. Adv. Mater. 19, 848–851 (2007)

    Article  CAS  Google Scholar 

  31. S.R. Sivakkumar, P.C. Howlett, B. Winther-Jensen, M. Forsyth, D.R. Macfarlane, Polyterthiophene/CNT composite as a cathode material for lithium batteries employing an ionic liquid electrolyte. Electrochim. Acta. 54, 6844–6849 (2009)

    Article  CAS  Google Scholar 

  32. L.M. Zhu, W. Shi, R.R. Zhao, Y.L. Cao, X.P. Ai, A.W. Lei, H.X. Yang, N-dopable polythiophenes as high capacity anode materials for all-organic Li-ion batteries. J. Electroanal. Chem. 688, 118–122 (2013)

    Article  CAS  Google Scholar 

  33. S. Singhal, P. Yadav, S. Naqvi, S. Gupta, A. Patra, Donor-acceptor-donor copolymers with 3,4-ethylenedioxythiophene moiety: electropolymerization and effect on optoelectronic and electrochromic properties. ACS Omega. 4, 3484–3492 (2019)

    Article  CAS  Google Scholar 

  34. S. Ming, S. Zhen, K. Lin, L. Zhao, J. Xu, B. Lu, Thiadiazolo[3,4-c]pyridine as an acceptor toward fast-switching green donor-acceptor-type electrochromic polymer with low bandgap. ACS Appl. Mater. Interfaces. 7, 11089–11098 (2015)

    Article  CAS  Google Scholar 

  35. K.S. Lee, Y.K. Sun, J. Noh, K.S. Song, D.W. Kim, Improvement of high voltage cycling performance and thermal stability of lithium-ion cells by use of a thiophene additive. Electrochem. Commun. 11, 1900–1903 (2009)

    Article  CAS  Google Scholar 

  36. J.Y. Lee, S.Y. Han, B. Lim, Y.C. Nah, A novel quinoxaline-based donor-acceptor type electrochromic polymer. J. Ind. Eng. Chem. 70, 380–384 (2019)

    Article  CAS  Google Scholar 

  37. B.S. Lee, S.B. Son, K.M. Park, W.R. Yu, K.H. Oh, S.H. Lee, Anodic properties of hollow carbon nanofibers for Li-ion battery. J. Power Sour. 199, 53–60 (2012)

    Article  CAS  Google Scholar 

  38. X. Xie, S. Wang, K. Kretschmer, G. Wang, Two-dimensional layered compound based anode materials for lithium-ion batteries and sodium-ion batteries. J. Colloid Interface Sci. 499, 17–32 (2017)

    Article  CAS  Google Scholar 

  39. Z. Lei, Q. Yang, Y. Xu, S. Guo, W. Sun, H. Liu, L.P. Lv, Y. Zhang, Y. Wang, Boosting lithium storage in covalent organic framework via activation of 14-electron redox chemistry. Nat. Commun. 9, 576 (2018)

    Article  Google Scholar 

  40. M. Gora, W. Krzywiec, J. Mieczkowski, E.C. Rodrigues Maia, G. Louarn, M. Zagorska, A. Pron, Alternating copolymers of diketopyrrolopyrrole or benzothiadiazole and alkoxy-substituted oligothiophenes: spectroscopic, electrochemical and spectroelectrochemical investigations. Electrochim. Acta. 144, 211–220 (2014)

    Article  CAS  Google Scholar 

  41. Q.T. Wang, R.R. Li, X.Z. Zhou, J. Li, Z.Q. Lei, Polythiophene-coated nano-silicon composite anodes with enhanced performance for lithium-ion batteries. J. Solid State Electrochem. 20, 1331–1336 (2016)

    Article  CAS  Google Scholar 

  42. L. Liu, F. Tian, X. Wang, Z. Yang, M. Zhou, X. Wang, Porous polythiophene as a cathode material for lithium batteries with high capacity and good cycling stability. React. Funct. Polym. 72, 45–49 (2012)

    Article  CAS  Google Scholar 

  43. J. Li, A. Levitt, N. Kurra, K. Juan, N. Noriega, X. Xiao, X. Wang, H. Wang, H.N. Alshareef, Y. Gogotsi, MXene-conducting polymer electrochromic microsupercapacitors. Energy Stor. Mater. 20, 455–461 (2019)

    Google Scholar 

  44. L. Zhan, Z. Song, J. Zhang, J. Tang, H. Zhan, Y. Zhou, C. Zhan, PEDOT: cathode active material with high specific capacity in novel electrolyte system. Electrochim. Acta. 53, 8319–8323 (2008)

    Article  CAS  Google Scholar 

  45. P. Wang, Y. Zhang, Y. Yin, L. Fan, N. Zhang, K. Sun, In situ synthesis of CuCo2S4@N/S-doped graphene composites with pseudocapacitive properties for high-performance lithium-ion batteries. ACS Appl. Mater. Interfaces. 10, 11708–11714 (2018)

    Article  CAS  Google Scholar 

  46. D. Mukherjee, Y.K.G. Gowda, H. Makri Nimbegondi Kotresh, S. Sampath, Porous, hyper-cross-linked, three-dimensional polymer as stable, high rate capability electrode for lithium-ion battery. ACS Appl. Mater. Interfaces. 9, 19446–19454 (2017)

    Article  CAS  Google Scholar 

  47. C. Li, L. Kong, J. Zhao, B. Liang, Preparation of D-A-D conjugated polymers based on [1,2,5]thiadiazolo[3,4-c]pyridine and thiophene derivatives and their electrochemical properties as anode materials for lithium-ion batteries, Colloids Surf. Physicochem Eng. Aspects. 651, 129707 (2022)

    Article  CAS  Google Scholar 

  48. B. Liang, X. Liu, X. Guo, J. Zhao, Preparation and electrochemical properties of benzothiadiazole-benzotriazole donor-acceptor conductive polymer lithium-ion anode materials. Synth. Met. 289, 117112 (2022)

    Article  CAS  Google Scholar 

  49. Z. Lei, X. Chen, W. Sun, Y. Zhang, Y. Wang, Exfoliated triazine-based covalent organic nanosheets with multielectron redox for high-performance lithium organic batteries. Adv. Energy Mater. 9, 1801010 (2019)

    Article  Google Scholar 

  50. Z. Song, H. Zhan, Y. Zhou, Polyimides: promising energy-storage materials. Angew Chem. Int. Ed. 49, 8444–8448 (2010)

    Article  CAS  Google Scholar 

  51. Q. Yuan, C. Li, X. Guo, J. Zhao, Y. Zhang, B. Wang, Y. Dong, L. Liu, Electrochemical performance and storage mechanism study of conjugate donor–acceptor organic polymers as anode materials of lithium-ion battery. Energy Rep. 6, 2094–2105 (2020)

    Article  Google Scholar 

  52. X. Zhang, W. Ou Yang, G. Zhu, T. Lu, L. Pan, Shuttle-like carbon-coated FeP derived from metal-organic frameworks for lithium-ion batteries with superior rate capability and long-life cycling performance. Carbon. 143, 116–124 (2019)

    Article  CAS  Google Scholar 

  53. X. Pu, D. Zhao, C. Fu, Z. Chen, S. Cao, C. Wang, Y. Cao, Understanding and calibration of charge storage mechanism in cyclic voltammetry curves. Angew Chem. Int. Ed. 60, 21310–21318 (2021)

    Article  CAS  Google Scholar 

  54. X. Yang, A.L. Rogach, Electrochemical techniques in battery research: a tutorial for onelectrochemists. Adv. Energy Mater. 9, 1900747 (2019)

    Article  Google Scholar 

  55. S. Li, J. Qiu, C. Lai, M. Ling, H. Zhao, S. Zhang, Surface capacitive contributions: towards high rate anode materials for sodium ion batteries. Nano Energy. 12, 224–230 (2015)

    Article  CAS  Google Scholar 

  56. B. Ni, Y. Li, T. Chen, T. Lu, L. Pan, Covalent organic frameworks converted N, B co-doped carbon spheres with excellent lithium ion storage performance at high current density. J. Colloid Interface Sci. 542, 213–221 (2019)

    Article  CAS  Google Scholar 

  57. W. Tian, H. Hu, Y. Wang, P. Li, J. Liu, J. Liu, X. Wang, X. Xu, Z. Li, Q. Zhao, H. Ning, W. Wu, M. Wu, Metal-organic frameworks mediated synthesis of one-dimensional molybdenum-based/carbon composites for enhanced lithium storage. ACS Nano. 12, 1990–2000 (2018)

    Article  CAS  Google Scholar 

  58. X. Chen, L. Lv, W. Sun, Y. Hu, X. Tao, Y. Wang, Ultrasmall MoC nanoparticles embedded in 3D frameworks of nitrogen-doped porous carbon as anode materials for efficient lithium storage with pseudocapacitance. J. Mater. Chem. A 6, 13705–13716 (2018)

    Article  CAS  Google Scholar 

  59. X. Guo, Q. Yuan, C. Li, H. Du, J. Zhao, L. Liu, Y. Li, Y. Xie, V. Vaidya, The synthesis of alternating donor–acceptor polymers based on pyrene-4, 5, 9, 10-tetraone and thiophene derivatives, their composites with carbon, and their lithium storage performances as anode materials. RSC Adv. 11, 15044–15053 (2021)

    Article  CAS  Google Scholar 

  60. Q. Pei, G. Zuccarello, M. Ahlskog, O. Inganäs, Electrochromic and highly stable poly (3, 4-ethylenedioxythiophene) switches between opaque blue-black and transparent sky blue. Polymer. 35, 1347–1351 (1994)

    Article  CAS  Google Scholar 

  61. X. Chen, H. Zhang, C. Ci, W. Sun, Y. Wang, Few-layered boronic ester based covalent organic frameworks/carbon nanotube composites for high-performance k-organic batteries. ACS Nano. 13, 3600–3607 (2019)

    Article  CAS  Google Scholar 

Download references

Funding

This study was supported by National Natural Science Foundation of China, (22172069, 22272070); Heilongjiang Provincial Natural Science Foundation of China, (LH2020E089); Basic Scientific Research program of Nantong City, (JC22022014, JCZ21134); China Postdoctoral Science Foundation, (2021M691970); Outstanding young core teachers from Green-Blue Project of Colleges and Universities in Jiangsu Province; Young and Middle-aged Academic Leaders from Green-Blue Project of Colleges and Universities in Jiangsu Province; Postdoctoral Innovation Project of Shandong Province, (202103051).

Author information

Authors and Affiliations

Authors

Contributions

BL: Methodology, Writing (original draft); JZ: Writing—review & editing; CB: Writing—review & editing.

Corresponding author

Correspondence to Jinsheng Zhao.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 92.1 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, B., Zhao, J. & Ban, C. Preparation and properties of quinoxaline and pyrazine D (donor)–A (acceptor) conductive polymer lithium-ion battery anode materials. J Mater Sci: Mater Electron 34, 1450 (2023). https://doi.org/10.1007/s10854-023-10832-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10832-w

Navigation