Skip to main content
Log in

A redox-active conjugated microporous polymer cathode for high-performance lithium/potassium-organic batteries

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Organic redox-active materials have emerged as a class of electrode materials for rechargeable batteries due to their high redox activity, low cost, structure diversity and flexibility. However, the high solubility of organic small molecules in organic electrolytes commonly leads to the fast capacity decay with cycling. Herein, we report a redox-active conjugated microporous polymer of poly(pyrene-co-anthraquinone) (PyAq) cathode material consisting of pyrene and anthraquinone units. Benefiting from the highly cross-linked polymer structure with insoluble nature in organic electrolytes, the high surface area and the plentiful redox-active carbonyl groups, the PyAq cathode demonstrates outstanding electrochemical performances for both lithium-ion batteries (LIBs) and potassium-ion batteries (KIBs). Specifically, the PyAq cathode for LIBs delivers a high reversible capacity of 169 mAh g−1 at the current density of 20 mA g−1, a high rate capability (142 mAh g−1 at 1000 mA g−1) and an excellent cycling stability for 4000 cycles. Additionally, the PyAq cathode for KIBs also exhibits a high reversible capacity of 143 mAh g−1 with a long cycling life over 800 cycles. The excellent electrochemical performance demonstrates that the newly developed PyAq could be an attractive cathode material for the advanced energy storage technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Croguennec L, Palacin MR. J Am Chem Soc, 2015, 137: 3140–3156

    CAS  PubMed  Google Scholar 

  2. Cheng XB, Zhang R, Zhao CZ, Zhang Q. Chem Rev, 2017, 117: 10403–10473

    CAS  PubMed  Google Scholar 

  3. Li M, Lu J, Chen Z, Amine K. Adv Mater, 2018, 30: 1800561

    Google Scholar 

  4. Yuan LX, Wang ZH, Zhang WX, Hu XL, Chen JT, Huang YH, Goodenough JB. Energy Environ Sci, 2011, 4: 269–284

    CAS  Google Scholar 

  5. Goodenough JB, Park KS. J Am Chem Soc, 2013, 135: 1167–1176

    CAS  PubMed  Google Scholar 

  6. Cano ZP, Banham D, Ye S, Hintennach A, Lu J, Fowler M, Chen Z. Nat Energy, 2018, 3: 279–289

    Google Scholar 

  7. Armand M, Tarascon JM. Nature, 2008, 451: 652–657

    CAS  PubMed  Google Scholar 

  8. Armand M, Grugeon S, Vezin H, Laruelle S, Ribière P, Poizot P, Tarascon JM. Nat Mater, 2009, 8: 120–125

    CAS  PubMed  Google Scholar 

  9. Chen H, Armand M, Courty M, Jiang M, Grey CP, Dolhem F, Tarascon JM, Poizot P. J Am Chem Soc, 2009, 131: 8984–8988

    CAS  PubMed  Google Scholar 

  10. Song Z, Qian Y, Liu X, Zhang T, Zhu Y, Yu H, Otani M, Zhou H. Energy Environ Sci, 2014, 7: 4077–4086

    CAS  Google Scholar 

  11. Choi W, Harada D, Oyaizu K, Nishide H. J Am Chem Soc, 2011, 133: 19839–19843

    CAS  PubMed  Google Scholar 

  12. Nokami T, Matsuo T, Inatomi Y, Hojo N, Tsukagoshi T, Yoshizawa H, Shimizu A, Kuramoto H, Komae K, Tsuyama H, Yoshida J. Am Chem Soc, 2012, 134: 19694–19700

    CAS  Google Scholar 

  13. Wang H, Yuan S, Si Z, Zhang X. Energy Environ Sci, 2015, 8: 3160–3165

    CAS  Google Scholar 

  14. Song Z, Qian Y, Zhang T, Otani M, Zhou H. Adv Sci, 2015, 2: 1500124

    Google Scholar 

  15. Lu Y, Hou X, Miao L, Li L, Shi R, Liu L, Chen J. Angew Chem Int Ed, 2019, 58: 7020–7024

    CAS  Google Scholar 

  16. Yang J, Xiong P, Shi Y, Sun P, Wang Z, Chen Z, Xu Y. Adv Funct Mater, 2020, 30: 1909597

    CAS  Google Scholar 

  17. Yang J, Wang Z, Shi Y, Sun P, Xu Y. ACS Appl Mater Interfaces, 2020, 12: 7179–7185

    CAS  PubMed  Google Scholar 

  18. Song Z, Qian Y, Gordin ML, Tang D, Xu T, Otani M, Zhan H, Zhou H, Wang D. Angew Chem Int Ed, 2015, 54: 13947–13951

    CAS  Google Scholar 

  19. Gomez I, Leonet O, Alberto Blazquez J, Grande HJ, Mecerreyes D. ACS Macro Lett, 2018, 7: 419–424

    CAS  Google Scholar 

  20. Wu X, Leonard DP, Ji X. Chem Mater, 2017, 29: 5031–5042

    CAS  Google Scholar 

  21. Hosaka T, Kubota K, Hameed AS, Komaba S. Chem Rev, 2020, 120: 6358–6466

    CAS  PubMed  Google Scholar 

  22. Eftekhari A, Jian Z, Ji X. ACS Appl Mater Interfaces, 2017, 9: 4404–4419

    CAS  PubMed  Google Scholar 

  23. Xu Y, Jin S, Xu H, Nagai A, Jiang D. Chem Soc Rev, 2013, 42: 8012–8031

    CAS  PubMed  Google Scholar 

  24. Jiang JX, Wang C, Laybourn A, Hasell T, Clowes R, Khimyak YZ, Xiao J, Higgins SJ, Adams DJ, Cooper AI. Angew Chem Int Ed, 2011, 50: 1072–1075

    CAS  Google Scholar 

  25. Jiang JX, Su F, Trewin A, Wood C, Campbell N, Niu H, Dickinson C, Ganin A, Rosseinsky M, Khimyak Y, Cooper A. Angew Chem Int Ed, 2007, 46: 8574–8578

    CAS  Google Scholar 

  26. Jiang JX, Su F, Trewin A, Wood CD, Niu H, Jones JTA, Khimyak YZ, Cooper AI. J Am Chem Soc, 2008, 130: 7710–7720

    CAS  PubMed  Google Scholar 

  27. Weeraratne KS, Alzharani AA, El-Kaderi HM. ACS Appl Mater Interfaces, 2019, 11: 23520–23526

    CAS  PubMed  Google Scholar 

  28. Zhang C, Qiao Y, Xiong P, Ma W, Bai P, Wang X, Li Q, Zhao J, Xu Y, Chen Y, Zeng JH, Wang F, Xu Y, Jiang JX. ACS Nano, 2019, 13: 745–754

    CAS  PubMed  Google Scholar 

  29. Zhang C, He Y, Mu P, Wang X, He Q, Chen Y, Zeng J, Wang F, Xu Y, Jiang JX. Adv Funct Mater, 2018, 28: 1705432

    Google Scholar 

  30. Molina A, Patil N, Ventosa E, Liras M, Palma J, Marcilla R. Adv Funct Mater, 2020, 30: 1908074

    CAS  Google Scholar 

  31. Kou Y, Xu Y, Guo Z, Jiang D. Angew Chem Int Ed, 2011, 50: 8753–8757

    CAS  Google Scholar 

  32. Chen Z, Xu N, Li W, Zhao R, Dong Y, Liu J, Su C, Wang J, Zhang C. J Mater Chem A, 2019, 7: 16347–16355

    CAS  Google Scholar 

  33. Sing KSW. Pure Appl Chem, 1985, 57: 603–619

    CAS  Google Scholar 

  34. Wang X, Zhang C, Xu Y, He Q, Mu P, Chen Y, Zeng J, Wang F, Jiang JX. Macromol Chem Phys, 2018, 219: 1700524

    Google Scholar 

  35. Muench S, Wild A, Friebe C, Häupler B, Janoschka T, Schubert US. Chem Rev, 2016, 116: 9438–9484

    CAS  PubMed  Google Scholar 

  36. Ma T, Zhao Q, Wang J, Pan Z, Chen J. Angew Chem Int Ed, 2016, 55: 6428–6432

    CAS  Google Scholar 

  37. Zhou Y, Wang B, Liu C, Han N, Xu X, Zhao F, Fan J, Li Y. Nano Energy, 2015, 15: 654–661

    CAS  Google Scholar 

  38. Zhang C, Yang X, Ren W, Wang Y, Su F, Jiang JX. J Power Sources, 2016, 317: 49–56

    CAS  Google Scholar 

  39. Li Q, Li D, Wang H, Wang H, Li Y, Si Z, Duan Q. ACS Appl Mater Interfaces, 2019, 11: 28801–28808

    CAS  PubMed  Google Scholar 

  40. Wang G, Chandrasekhar N, Biswal BP, Becker D, Paasch S, Brunner E, Addicoat M, Yu M, Berger R, Feng X. Adv Mater, 2019, 31: 1901478

    Google Scholar 

  41. Lee S, Kwon G, Ku K, Yoon K, Jung SK, Lim HD, Kang K. Adv Mater, 2018, 30: 1704682

    Google Scholar 

  42. Liang Y, Tao Z, Chen J. Adv EnergyMater, 2012, 2: 742–769

    CAS  Google Scholar 

  43. Miyabe K, Takeuchi S. J Phys Chem B, 1997, 101: 7773–7779

    CAS  Google Scholar 

  44. Zhao S, Yan T, Wang H, Zhang J, Shi L, Zhang D. ACS Appl Mater Interfaces, 2016, 8: 18027–18035

    CAS  PubMed  Google Scholar 

  45. Ye J, Zang J, Tian Z, Zheng M, Dong Q. J Mater Chem A, 2016, 4: 13223–13227

    CAS  Google Scholar 

  46. Komaba S, Murata W, Ishikawa T, Yabuuchi N, Ozeki T, Nakayama T, Ogata A, Gotoh K, Fujiwara K. Adv Funct Mater, 2011, 21: 3859–3867

    CAS  Google Scholar 

  47. Obrezkov FA, Shestakov AF, Traven VF, Stevenson KJ, Troshin PA. J Mater Chem A, 2019, 7: 11430–11437

    CAS  Google Scholar 

  48. Fan L, Liu Q, Xu Z, Lu B. ACS Energy Lett, 2017, 2: 1614–1620

    CAS  Google Scholar 

  49. Fan L, Ma R, Wang J, Yang H, Lu B. Adv Mater, 2018, 30: 1805486

    Google Scholar 

  50. Li B, Zhao J, Zhang Z, Zhao C, Sun P, Bai P, Yang J, Zhou Z, Xu Y. Adv Funct Mater, 2019, 29: 1807137

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21574077).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chong Zhang or Jia-Xing Jiang.

Additional information

Conflict of interest

The authors declare that they have no conflict of interest.

Supporting information for

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, LW., Zhang, C., Xiong, P. et al. A redox-active conjugated microporous polymer cathode for high-performance lithium/potassium-organic batteries. Sci. China Chem. 64, 72–81 (2021). https://doi.org/10.1007/s11426-020-9871-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-020-9871-8

Navigation