Skip to main content
Log in

Frequency dependent dielectric spectroscopy of Au/n-Si structure with stannic oxide (SnO2) interfacial layer

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

This study investigated the frequency dependent dielectric spectrum of Au/Si structures in which stannic oxide (SnO2) films formed by spin coating technique on silicon substrate were used as interface. Surface morphological examination of interfacial layer was made by atomic force microscopy and scanning electron microscope. The analyzes revealed a uniform and low surface roughness of 2.66 nm, which is important for high performance applications. Capacitance-frequency (Cf) and conductance-frequency (G/w–f) analysis techniques were used to characterize the produced devices. For this purpose, measurements were made at 1–1000 kHz frequency range and dc voltages between − 0.5 and 6.0 V with steps of 0.02 V. All measurement processes were performed at room temperature and under dark environment. The Complex impedance Cole–Cole plots showed the relaxation behavior as non-Debye type. The contribution of grain and grain boundary to conductance was predicted. Module analysis showed that the electrical transport in the material was in the form of a hopping mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. C. Bilkan, Y. Azizian-Kalandaragh, O. Sevgili, S. Altindal, Investigation of the efficiencies of the (SnO2-PVA) interlayer in Au/n-Si (MS) SDs on electrical characteristics at room temperature by comparison. J. Mater. Sci. Mater. Electron. 30, 20479–20488 (2019)

    Article  CAS  Google Scholar 

  2. C.G. Granqvist, Transparent conductors as solar en-ergy materials: a panoramic review. Solar Energy Ma-terials Solar Cells 91(17), 1529–1598 (2007)

    Article  CAS  Google Scholar 

  3. G.J. Exarhos, X.-D. Zhou, Discovery-based design of transparent conducting oxide films. Thin Solid Films 515(18), 7025–7052 (2007)

    Article  CAS  Google Scholar 

  4. S. Malato, P. Fernández-Ibáñez, M.I. Maldonado, J. Blanco, W. Gernjak, Decontamination and disinfection of water by solar photocatalysis: recent overview and trends. Catal. Today 147(1), 1–59 (2009)

    Article  CAS  Google Scholar 

  5. B. Li, L.D. Wang, B.N. Kang, P. Wang, Y. Qiu, Review of recent progress in solid-state dye-sensitized solar cells. Sol. Energy Mater. Sol. Cells 90(5), 549–573 (2006)

    Article  CAS  Google Scholar 

  6. Z.M. Jarzebski, J.P. Marton, Physical properties of SnO2 materials: III. Optical properties. J. Electrochem. Soci. 123(10), 333c–346c (1976)

    Article  CAS  Google Scholar 

  7. F. Javier Yusta, M.L. Hitchman, S.H. Shamlian, CVD preparation and characterization of tin dioxide films for electrochemical applications. J. Mater. Chem. 7, 1421–1427 (1997)

    Article  Google Scholar 

  8. C. Lee, W.-Y. Lee, H. Lee, S. Ha, J.-H. Bae, I.-M. Kang, H. Kang, K. Kim, J. Jang, Sol–gel processed yttrium-doped SnO2 thin film transistors. Electronics 9(2), 254 (2020)

    Article  CAS  Google Scholar 

  9. N. Kikuchi, E. Kusano, E. Kishio, A. Kinbara, Electrical and mechanical properties of SnO2: Nb films for touch screens. Vacuum 66(3–4), 365–371 (2002)

    Article  CAS  Google Scholar 

  10. M. Mwamburi, E. Wäckelgård, A. Roos, Reparation and characterization of solar selective SnOx: F coated aluminum reflector surfaces. Thin Solid Films 374(1), 1–9 (2000)

    Article  CAS  Google Scholar 

  11. X. Song, Q. Qi, T. Zhang, C. Wang, A humidity sensor based on KCl-doped SnO2 nanofibers. Sens. Actuators, B Chem. 138(1), 368–373 (2009)

    Article  CAS  Google Scholar 

  12. Y. Wang, X. Zhu, X. Xue, X. Chi, R. Wang, W. Ji, Electron transport mechanism in colloidal SnO2 nanoparticle films and its implications for quantum-dot light-emitting diodes. J. Phys. D Appl. Phys. 55(37), 374004 (2022)

    Article  Google Scholar 

  13. Y. Masuda, Recent advances in SnO2 nanostructure based gas sensors. Sens. Actuators, B Chem. 364, 131876 (2022)

    Article  CAS  Google Scholar 

  14. N.S. Baik, G. Sakai, N. Miura, N. Yamazoe, Hydrothermally treated sol solution of tin oxide for thin-film gas sensor. Sens. Actuators B 63, 74–79 (2000)

    Article  CAS  Google Scholar 

  15. S.Y. Park, K. Zhu, Advances in SnO2 for efficient and stable n–i–p perovskite solar cells. Adv. Mater. 34(27), 2110438 (2022)

    Article  CAS  Google Scholar 

  16. Y. Liu, L. Chen, H. Jiang, C. Li, Building hierarchically hybridized carbon to anchor SnO2 nanoparticles for greatly enhanced lithium storage. J. Alloy. Compd. 944, 169100 (2023)

    Article  CAS  Google Scholar 

  17. Z. Fang, L. Yang, Y. Jin, K. Liu, H. Feng, B. Deng, L. Zheng, C. Cui, C. Tian, L. Xie, Sputtered SnO2 as an interlayer for efficient semitransparent perovskite solar cells. Chin. Phys. B 31(11), 18801 (2022)

    Article  Google Scholar 

  18. V. Casey, M. Stephenson, A study of undoped and molybdenum doped, polycrystalline, tin oxide thin films produced by a simple reactive evaporation technique. J. Phys. D Appl. Phys. 23(9), 1212 (1990)

    Article  CAS  Google Scholar 

  19. L. Wang, J. Yang, H. Zhao, Y. Liu, G. Han, J. Wang, Structural, optical and electrical properties of r-TiO2: Sn/SnO2:(F/Nb) tandem film by aerosol-assisted chemical vapor deposition. Surfaces and Interfaces. 33, 102196 (2022)

    Article  CAS  Google Scholar 

  20. F. Meng, Z. Liao, C. Xing, Z. Yuan, R. Zhang, Preparation of SnO2/SiO2 nanocomposites by sol-gel method for enhancing the gas sensing performance to triethylamine. J. Alloy Compd. (2022). https://doi.org/10.1016/j.jallcom.2021.162189

    Article  Google Scholar 

  21. S. Chayoukhi, B. Gassoumi, H. Dhifelaoui, N. Boucherou, A. Boukhachem, M. Amlouk, A. Zghal, Structural, optical and mechanical investigations on pure and Co-doped SnO2 thin films samples. Inorg. Chem. Commun. 149, 110391 (2023)

    Article  CAS  Google Scholar 

  22. J. Sawahata, M.M. Islam, Effects of Ta, Nb, Ba, and Sb concentration on structural, electrical, and optical properties of SnO2 thin films prepared by metal organic decomposition using spin coating. Thin Solid Films 752, 139249 (2022)

    Article  CAS  Google Scholar 

  23. J.B. Dubow, D.E. Burk, J.R. Sites, Efficient photovoltaic heterojunctions of indium tin oxides on silicon. Appl. Phys. Lett. 29, 494 (1976)

    Article  CAS  Google Scholar 

  24. T. Nagatomo, M. Ando, O. Omoto, Fabrication and characterization of SnO2/n-Si solar cells. Jpn. J. Appl. Phys. 18, 1103 (1979)

    Article  CAS  Google Scholar 

  25. S. Ashok, P.P. Sharma, S.J. Fonash, Spray-deposited ITO—Silicon SIS heterojunction solar cells. IEEE Trans. Electron Dev. ED 27(4), 725–730 (1980)

    Article  Google Scholar 

  26. S. Varma, K.V. Rao, S. Kar, Electrical characteristics of silicon-tin oxide heterojunctions prepared by chemical vapor deposition. J. Appl. Phys. 56, 2812 (1984)

    Article  CAS  Google Scholar 

  27. S. Mondal, A. Ghosh, S. Dwivedi, A. Dalal, A. Mondal, Mater. Sci. Semicond. Process. 130, 105834 (2021)

    Article  CAS  Google Scholar 

  28. F.D. Akgul, S. Eymur, U. Akin, O.F. Yuksel, H. Karadeniz, N. Tugluoglu, J. Mater. Sci. Mater. Electron. 32, 15857–15863 (2021)

    Article  CAS  Google Scholar 

  29. T. Colakoglu, M. Parlak, Structural characterization of polycrystalline Ag–In–Se thin films deposited by e-beam technique. Appl. Surf. Sci. 254, 1569–1577 (2008)

    Article  CAS  Google Scholar 

  30. W.L. Jeong, J.H. Min, H.S. Kim, I.Y. Kim, J.H. Kim, D.S. Lee, Thin Solid Films 638, 305–311 (2017)

    Article  CAS  Google Scholar 

  31. F.J.M.Z. Heringdorf, M.C. Reuter, R.M. Tromp, Growth dynamics of pentacene thin films. Nature (London) 412, 517 (2001)

    Article  Google Scholar 

  32. M. Shtein, J. Mapel, J.B. Benzinger, S.R. Forrest, Effects of film morphology and gate dielectric surface preparation on the electrical characteristics of organicvapor-phase-deposited pentacene thin-film transistors. Appl. Phys. Lett. 81, 268 (2002)

    Article  CAS  Google Scholar 

  33. A. Singh, Characterization of interface states at Ni/nCdF2 Schottky barrier type diodes and the effect of CdF2 surface preparation. Solid-State Electron. 28, 223 (1985)

    Article  CAS  Google Scholar 

  34. E.H. Nicollian, A. Goetzberger, The Si-Si02 interface–electrical properties as determined by the metal-insulator-silicon conductance technique. BellSyst. Tech. J. 46, 1055 (1967)

    CAS  Google Scholar 

  35. R. Castagné, A. Vapaille, Description of the SiO2/Si interface properties by means of very low frequency MOS capacitance measurements. Surf. Sci. 28, 157 (1971)

    Article  Google Scholar 

  36. B.G. Budaguan, A.A. Sherchenkov, V.D. Chernomordic, A.V. Biriukov, L.Y. Ljungberg, A-Si:H/c-Si heterostructures prepared by 55 kHz glow discharge high-rate deposition technique. J. Non-Crystalline Solids 227, 1123–1126 (1998)

    Article  Google Scholar 

  37. A. Barkhordari, H. Mashayekhi, P. Amiri, Ş Altındal, Y. Azizian-Kalandaragh, On the investigation of frequency-dependent dielectric features in Schottky barrier diodes (SBDs) with polymer interfacial layer doped by graphene and ZnTiO3 nanostructures. Appl. Phys. A 129, 1–11 (2023)

    Article  Google Scholar 

  38. E.H. Nicollian, J.R. Brews, MOS Physics and technology (Wiley, New York, 1982)

    Google Scholar 

  39. P. Chattopadhyay, B. Raychaudhuri, Origin of the anomalous peak in the forward capacitance-voltage pilot of a Schottky barrier diode. Solid-State Electron. 35(6), 875–878 (1992)

    Article  Google Scholar 

  40. P. Chattopadhyay, B. Raychaudhuri, New technique for the determination of series resistance of Schottky barrier diodes. Solid-State Electron. 35(7), 1023–1024 (1992)

    Article  CAS  Google Scholar 

  41. P. Chattopadhyay, B. Raychaudhuri, Frequency dependence of forward capacitance-voltage characteristics of Schottky barrier diodes. Solid-State Electron. 36(4), 605–610 (1993)

    Article  CAS  Google Scholar 

  42. O. Pakma, N. Serin, T. Serin, S. Altındal, Influence of frequency and bias voltage on dielectric properties and electrical conductivity of Al/TiO2/p-Si/p + (MOS) structures. J. Phys. D: Appl. Phys. 41, 215103 (2008)

    Article  Google Scholar 

  43. A. Tataroğlu, I. Yücedağ, Ş Altındal, Dielectric properties and ac electrical conductivity studies of MIS type Schottky diodes at high temperatures. Microelectron. Eng. 85, 1518–1523 (2008)

    Article  Google Scholar 

  44. C.G. Turk, S.O. Tan, S. Altindal, B. Inem, Frequency and voltage dependence of barrier height, surface states, and series resistance in Al/Al2O3/p-Si structures in wide range frequency and voltage. Phys. B 582, 411979 (2020)

    Article  CAS  Google Scholar 

  45. H.H. Gullu, O.B. Surucu, M. Terlemezoglu, D.E. Yildiz, M. Parlak, Frequency effect on electrical and dielectric characteristics of In/Cu2ZnSnTe4/Si/Ag diode structure. J. Mater. Sci. 30, 9814–9821 (2019)

    CAS  Google Scholar 

  46. A. Tataroglu, S. Altindal, Study on the frequency dependence of electrical and dielectric characteristics of Au/SnO2/n-Si (MIS) structures. Microelectron. Eng. 85, 1866–1871 (2008)

    Article  CAS  Google Scholar 

  47. S. Altındal, O. Sevgili, Y.A. Kalanaragh, A comparison of electrical parameters of Au/n-Si and Au/(CoSO4–PVP)/n-Si structures (SBDs) to determine the effect of (CoSO4–PVP) organic interlayer at room temperature. J. Mater. Sci. 30, 9273–9280 (2019)

    Google Scholar 

  48. R. Mahani, A. Ashery, M.M.M. Elnasharty, Frequency and voltage dependence of the dielectric properties of Ni/SiO2/P-Si (MOS) structure. SILICON 12(8), 1879–1885 (2019)

    Article  Google Scholar 

  49. S. Demirezen, S.A. Yerişkin, Frequency and voltage-dependent dielectric spectroscopy characterization of Al/(Coumarin-PVA)/p-Si structures. J. Mater. Sci. Mater. Electron. 32, 25339–25349 (2021)

    Article  CAS  Google Scholar 

  50. Y.Ş Asar, Ö. Sevgili, Ş Altındal, Investigation of dielectric relaxation and ac conductivity in Au/(carbon nanosheet-PVP composite)/n-Si capacitors using impedance measurements. J. Mater. Sci.: Mater. Electron. 34, 893 (2023)

    Google Scholar 

  51. S. Demirezen, H.G. Çetinkaya, Ş Altındal, Doping rate, interface states and polarization effects on dielectric properties, electric modulus, and AC Conductivity in PCBM/NiO:ZnO/p-Si structures in wide frequency range. SILICON 14, 8517–8527 (2022)

    Article  CAS  Google Scholar 

  52. T. Larbi, B. Ouni, A. Boukhachem, K. Boubaker, M. Amlouk, Investigation of structural, optical, electrical and dielectric properties of catalytic sprayed hausmannite thin film. Mater. Res. Bull. 60, 457–466 (2014)

    Article  CAS  Google Scholar 

  53. B. Tareev, Physics of dielectric materials (Mir Publishers, Moscow, 1975)

    Google Scholar 

  54. R. Sengodan, B.C. Shekar, S. Sathish, Morphology, structural and dielectric properties of vacuum evaporated V2O5 thin films. Phys. Procedia 49, 158–165 (2013)

    Article  CAS  Google Scholar 

  55. N.S. Kumar, M.S. Raman, J. Chandrasekaran, R. Priya, M. Chavali, R. Suresh, Effect of post-growth annealing on the structural, optical and electrical properties of V2O5 nanorods and its fabrication, characterization of V2O5/p-Si junction diode. Mater. Sci. Semicond. Process. 41, 497–507 (2016)

    Article  CAS  Google Scholar 

  56. H.H. Güllü, D.E. Yıldız, Capacitance, conductance, and dielectric characteristics of Al/TiO2/Si diode. J Mater Sci: Mater Electron 32, 13549–13567 (2021)

    Google Scholar 

  57. K. Gangaprasad, T. Durga Rao, M.K. Niranjan, Microstructural studies of AgNbO3 ceramic by using complex impedance spectroscopy. AIP Conf. Proc. 1665(1), 110038 (2015)

    Article  Google Scholar 

  58. A. Khan, M. Hussain, M.A. Abbasi, Z.H. Ibupoto, O. Nur, M. Willander, Analysis of junction properties of gold–zinc oxide nanorods-based Schottky diode by means of frequency dependent electrical characterization on textile. J. Mater. Sci. 49, 3434–3441 (2014)

    Article  CAS  Google Scholar 

  59. J. Fan, R. Zamani, C. Fabrega, A. Shavel, C. Flox, M. Ibanez, T. Andreu, M.A. Lopez, J. Arbiol, J. Arbiol, J.R. Morante, A. Cabot, Solution-growth and optoelectronic performance of ZnO: Cl/TiO2 and ZnO: Cl/ZnxTiOy/TiO2 core–shell nanowires with tunable shell thickness. J. Phys. D. Appl. Phys. 45, 415301–415309 (2012)

    Article  Google Scholar 

  60. U. Intatha, S. Eitssayeam, J. Wang, T. Tunkasiri, Impedance study of giant dielectric permittivity in BaFe0.5Nb0.5O3 perovskite ceramic. Curr. Appl. Phys. 10, 21–25 (2010)

    Article  Google Scholar 

  61. E. Yükseltürk, M. Cotuk, S. Zeyrek, S. Altındal, M.M. Bülbül, The investigation of frequency and voltage dependence of electrical characteristics in Al/P3HT/p-Si (MPS) Structures. Mater. Today 18, 1842–1851 (2019)

    Google Scholar 

  62. E. Barsoukov, J.R. Macdonald, Impedance spectroscopy theory, experiment and applications (Wiley, New York, 2005)

    Book  Google Scholar 

  63. M.T. Güneşer, H. Elamen, Y. Badali, Ş Altíndal, Frequency dependent electrical and dielectric properties of the Au/(RuO2:PVC)/n-Si (MPS) structures. Physica B 657, 414791 (2023)

    Article  Google Scholar 

  64. S. Kar, R.L. Narasimhan, Characteristics of the Si–SiO2 interface states in thin (70–230 Å) oxide structures. J. Appl. Phys. 61, 5353–5359 (1987)

    Article  CAS  Google Scholar 

  65. M. Coskun, O. Polat, F.M. Coskun, Z. Durmus, M. Caglar, A. Turut, The electrical modulus and other dielectric properties by the impedance spectroscopy of LaCrO3 and LaCr0.90Ir0.10O3 perovskites. RSC Adv 8, 4634–4648 (2018)

    Article  CAS  Google Scholar 

  66. A. Molak, M. Paluch, S. Pawlus, J. Klimontko, Z. Ujma, I. Gruszka, Electric modulus approach to the analysis of electric relaxation in highly conducting (Na0.75Bi0.25)(Mn0.25Nb0.75) O3 ceramics. J Phys D Appl Phys 38, 1450 (2005)

    Article  CAS  Google Scholar 

  67. S. Thakur, R. Raia, I. Bdikin, M.A. Valente, Impedance and modulus spectroscopy characterization of Tb modified Bi0.8A0.1Pb0.1Fe0.9Ti0.1O3 ceramics. Mater Res 19, 1–8 (2016)

    Article  CAS  Google Scholar 

  68. M. Popescu, I. Bunget, Physics of solid dielectrics (Elseiver, Amsterdam, 1984)

    Google Scholar 

  69. A.K. Jonscher, Dielectric relaxation in solids (Chelsea Dielectrics Press, London, 1983)

    Google Scholar 

  70. N. Tuğluoğlu, F. Yakuphanoğlu, S. Karadeniz, Determination of the interface state density of the In/p-Si Schottky diode by conductance and capacitance–frequency characteristics. Physica B 393, 56 (2007)

    Article  Google Scholar 

  71. I. Tascioglu, O.T. Ozmen, H.M. Sagban, E. Yaglioglu, S. Altindal, Frequency dependent electrical and dielectric properties of Au/P3HT:PCBM:F4-TCNQ/n-Si schottky barrier diode. J. Electron. Mater. 46, 2379–2386 (2017)

    Article  CAS  Google Scholar 

  72. D. Maurya, J. Kumar, Shripal., Dielectric-spectroscopic and a.c. Conductivity studies on layered Na2-XKXTi3O7 (X=0.2, 0.3, 0.4) ceramics. J. Phys. Chem. Solids 66, 1614–1620 (2005)

    Article  CAS  Google Scholar 

  73. K.S. Rao, D.M. Prasad, P.M. Krishna, B.T.KCh. Varadarajulu, Impedance and modulus spectroscopy studies on Ba0.1Sr0.81La0.06Bi2Nb2O9 ceramic. Mater. Sci. Eng. B 133, 141–150 (2006)

    Article  CAS  Google Scholar 

  74. D.K. Schroder, Semiconductor material and device characterization, 3rd edn. (Wiley, New York, 2006)

    Google Scholar 

  75. J.R. Macdonald, Impedance spectroscopy. Ann. Biomed. Eng. 20, 289–305 (1992)

    Article  CAS  Google Scholar 

  76. K.J. Yang, C.M. Hu, MOS capacitance measurements for high-leakage thin dielectrics. IEEE Trans. Electron Devices 46, 1500 (1999)

    Article  CAS  Google Scholar 

  77. M. Chemla, V. Bertagna, R. Erreb, F. Rouellea, S. Petitdidierc, D. Levyc, Thickness of surface thin oxide layers determined by impedance spectroscopy using silicon/oxide/electrolyte (SOE) structures. Appl. Surf. Sci. 227, 193–204 (2004)

    Article  CAS  Google Scholar 

Download references

Funding

The work was supported Hitit University BAP office with the research Project Number FEF19004.15.010, FEF19002.15.001, FEF01.13.003.

Author information

Authors and Affiliations

Authors

Contributions

SK: participated in the investigation, methodology, formal analysis, and Writing—of the original draft,. DEY: participated in the investigation, methodology, formal analysis, Writing—of the original draft, Writing—reviewing & editing, of the manuscript visualization, funding acquisition, and supervision.

Corresponding author

Correspondence to D. E. Yıldız.

Ethics declarations

Competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karadeniz, S., Yıldız, D.E. Frequency dependent dielectric spectroscopy of Au/n-Si structure with stannic oxide (SnO2) interfacial layer. J Mater Sci: Mater Electron 34, 1416 (2023). https://doi.org/10.1007/s10854-023-10818-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10818-8

Navigation