Skip to main content
Log in

PANI: silicene nanocomposites based non-enzymatic electrochemical voltammetric sensor for dopamine detection

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Selective and sensitive detection of dopamine (DA) is imperative for the diagnosis and management of a wide range of neurological disorders, given its vital role as a critical neurotransmitter in the central nervous system. In this study, a series of non-enzymatic electrochemical voltammetric sensors based on polyaniline (PANI), PANI:Silicene, PANI:Coronene, and PANI:Rubrene nanocomposites (NCs) were developed for the detection of dopamine. The results showed that the PANI:Silicene NCs-based sensor exhibited a highly sensitive response towards DOP, with a sensitivity of 197.84 μAμM−1 cm−2 and the lowest limit of detection (LOD) of 0.0385 μM. The incorporation of silicene significantly enhanced the sensor’s performance in terms of both sensitivity and LOD. These findings demonstrate the potential of PANI-Silicene NC-based sensors for highly sensitive and specific detection of DOP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Scheme 1
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. A. Özcan, S. İlkbaş, A. Atılır Özcan, Development of a disposable and low-cost sensor for dopamine detection based on poly(pyrrole-3-carboxylic acid)-modified electrochemically over-oxidized pencil graphite electrode. Talanta 165, 489–495 (2017)

    Article  Google Scholar 

  2. Y. Feng, Y. Lu, Immunomodulatory effects of dopamine in inflammatory diseases. Front. Immunol. 12, 987 (2021)

    Article  Google Scholar 

  3. H.S. Han, H.K. Lee, J.M. You et al., Electrochemical biosensor for simultaneous determination of dopamine and serotonin based on electrochemically reduced GO-porphyrin. Sens Actuators B Chem. 190, 886–895 (2014)

    Article  CAS  Google Scholar 

  4. C. Cioates Negut, S.S. Gheorghe, R.I. Stefan-van Staden, J.F. van Staden, Fast screening test for molecular recognition of levodopa and dopamine in biological samples using 3D printed stochastic microsensors. J. Pharm. Biomed. Anal. 205, 114292 (2021)

    Article  CAS  Google Scholar 

  5. A. Martorana, F. di Lorenzo, Z. Esposito et al., Dopamine D2-agonist Rotigotine effects on cortical excitability and central cholinergic transmission in Alzheimer’s disease patients. Neuropharmacology 64, 108–113 (2013)

    Article  CAS  Google Scholar 

  6. J. Luo, J.F. Collingwood, Effective R2 relaxation rate, derived from dual-contrast fast-spin echo MRI, enables detection of hemisphere differences in iron level and dopamine function in Parkinson’s disease and healthy individuals. J. Neurosci. Methods 382, 109708 (2022)

    Article  Google Scholar 

  7. M.M. Khalefah, A.M. Khalifah, Determining the relationship between SARS-CoV-2 infection, dopamine, and COVID-19 complications. J Taibah Univ. Med. Sci. 15, 550–553 (2020)

    Google Scholar 

  8. A. Gottås, B.F. Ripel et al., Determination of dopamine concentrations in brain extracellular fluid using microdialysis with short sampling intervals, analyzed by ultra high performance liquid chromatography tandem mass spectrometry. J. Pharmacol. Toxicol. Methods 74, 75–79 (2015)

    Article  Google Scholar 

  9. M. Bouri, M.J. Lerma-García, R. Salghi et al., Selective extraction and determination of catecholamines in urine samples by using a dopamine magnetic molecularly imprinted polymer and capillary electrophoresis. Talanta 99, 897–903 (2012)

    Article  CAS  Google Scholar 

  10. F. Musshoff, P. Schmidt, R. Dettmeyer et al., Determination of dopamine and dopamine derived (R)-/(S)-salsolinol and norsalsolinol in various human brain areas using solid-phase extraction and gas chromatography/mass spectrometry. Forensic. Sci. Int. 113, 359–366 (2000)

    Article  CAS  Google Scholar 

  11. R. Wu, S. Yu, S. Chen et al., A carbon dots-enhanced laccase-based sensor for highly sensitive detection of dopamine in human serum. Anal. Chim. Acta 1229, 340365 (2022)

    Article  CAS  Google Scholar 

  12. A. Üğe, D. Koyuncu Zeybek, B. Zeybek, An sensor for sensitive detection of dopamine based on MWCNTs/CeO2-PEDOT composite. J. Electroanal. Chem. 813, 134–142 (2018)

    Article  Google Scholar 

  13. G. Deffo, M. Basumatary, N. Hussain et al., Eggshell nano-CaCO3 decorated PANi/rGO composite for sensitive determination of ascorbic acid, dopamine, and uric acid in human blood rum and urine. Mater. Today Commun. 33, 104357 (2022)

    Article  CAS  Google Scholar 

  14. F.S. Belaidi, A. Civélas, V. Castagnola et al., PEDOT-modified integrated microelectrodes for the detection of ascorbic acid, dopamine and uric acid. Sens Actuators B Chem. 214, 1–9 (2015)

    Article  CAS  Google Scholar 

  15. S.E. Elugoke, O.E. Fayemi, A.S. Adekunle et al., Sensor for the detection of dopamine using carbon quantum dots/copper oxide nanocomposite modified electrode. FlatChem 33, 100372 (2022)

    Article  CAS  Google Scholar 

  16. M. Ni, J. Chen, C. Wang et al., A high-sensitive dopamine sensor based on multilayer Ti3C2 MXene, graphitized multi-walled carbon nanotubes and ZnO nanospheres. Microchem. J. 178, 107410 (2022)

    Article  CAS  Google Scholar 

  17. H. Yang, C. Zhou, J. An et al., Ultra-fast synthesis of iron decorated multiwalled carbon nanotube composite materials: a sensitive sensor for determining dopamine. J Alloys Compd 897, 163257 (2022)

    Article  CAS  Google Scholar 

  18. K.P. Aryal, H.K. Jeong, Simultaneous determination of ascorbic acid, dopamine, and uric acid with polyaniline/hemin/reduced graphite oxide composite. Chem. Phys. Lett. 768, 138405 (2021)

    Article  CAS  Google Scholar 

  19. A. Ali, R. Jamal, T. Abdiryim, X. Huang, Synthesis of monodispersed PEDOT/Au hollow nanospheres and its application for electrochemical determination of dopamine and uric acid. J. Electroanal. Chem. 787, 110–117 (2017)

    Article  CAS  Google Scholar 

  20. T. Cao, Y. Zhou, H. Wang et al., Preparation of polyfluorinated azobenzene/niobate composite as sensor for detection of ascorbic acid and dopamine. Microchem. J. 179, 107422 (2022)

    Article  CAS  Google Scholar 

  21. T.C. Girija, M.V. Sangaranarayanan, Analysis of polyaniline-based nickel electrodes for electrochemical supercapacitors. J Power Sources 156, 705–711 (2006)

    Article  CAS  Google Scholar 

  22. K. Ghanbari, M. Moloudi, Flower-like ZnO decorated polyaniline/reduced graphene oxide NCs for simultaneous determination of dopamine and uric acid. Anal. Biochem. 512, 91–102 (2016)

    Article  CAS  Google Scholar 

  23. K. Ghanbari, Z. Babaei, Fabrication and characterization of non-enzymatic glucose sensor based on ternary NiO/CuO/polyaniline nanocomposite. Anal Biochem 498, 37–46 (2016)

    Article  CAS  Google Scholar 

  24. A. Krishnan, S. Beena, S.M.A. Shibli, A novel high performance Ti/Ti–W- reinforced polyaniline functionalized Ni–P electrode for high sensitive detection of dopamine from urine sample. Mater. Chem. Phys. 244, 122680 (2020)

    Article  CAS  Google Scholar 

  25. M. Afzali, A. Mostafavi, T. Shamspur, Square wave voltammetric determination of anticancer drug flutamide using carbon paste electrode modified by CuO/GO/PANI nanocomposite. Arab. J. Chem. 13, 3255–3265 (2020)

    Article  CAS  Google Scholar 

  26. P. Paulraj, A. Umar, K. Rajendran et al., Solid-state synthesis of Ag-doped PANI NCs for their end-use as an sensor for hydrogen peroxide and dopamine. Electrochim. Acta 363, 137158 (2020)

    Article  CAS  Google Scholar 

  27. Y. You, C. Yang, X. Zhang et al., Emerging two-dimensional silicene nanosheets for biomedical applications. Mater. Today Nano. 16, 100132 (2021)

    Article  CAS  Google Scholar 

  28. Fumagalli, E.M., Growth and physical properties of crystalline rubrene. 2012, Università degli Studi di Milano-Bicocca.

  29. Özdemir, H.G., Spin Kaplama Yontemiyle Rubrene ince filmlerinin hazırlanması ve optik özelliklerinin incelenmesi, in Fen Bilimleri Enstitüsü. 2013, Giresun University.

  30. J.-S. Kim, H. Kajii, Y. Ohmori, Characteristics of optical response in red organic light emitting diodes using two dopant system for application to the optical link devices. Thin Solid Films 499(1), 343–348 (2006)

    Article  CAS  Google Scholar 

  31. K.Y. Lin, Y.J. Wang, K.L. Chen, C.Y. Ho, C.C. Yang, J.L. Shen, K.C. Chiu, Role of molecular conformations in rubrene polycrystalline films growth from vacuum deposition at various substrate temperatures. Sci. Rep. 7, 40824 (2017)

    Article  CAS  Google Scholar 

  32. Du. Chuan, W. Wang, L. Li, H. Fuchs, L. Chi, Growth of rubrene crystalline thin films using thermal annealing on DPPC LB monolayer. Org. Electron. 14, 2534–2539 (2013)

    Article  Google Scholar 

  33. J. Xiao, Huiying Yang, Zongyou Yin, Jun Guo, Freddy Boey, Hua Zhang, Qichun Zhang, Preparation, characterization, and photoswitching/light-emitting behaviors of coronene nanowires. J. Mater. Chem. 21, 1423–1427 (2011)

    Article  CAS  Google Scholar 

  34. T.M. Krygowski, M. Cyranski, A. Ciesielski, B. Swirska, P. Leszczynski, J. Chem. Inform. Comput. Sci. 36, 1135 (1996)

    Article  CAS  Google Scholar 

  35. M. Shabani-Nooshabadi, F. Karimian-Taheri, Electrosynthesis of a polyaniline/zeolite nanocomposite coating on copper in a three-step process and the effect of current density on its corrosion protection performance. RSC Adv. 5(117), 96601–96610 (2015)

    Article  CAS  Google Scholar 

  36. Y. Zhang, J. Liu, Y. Zhang, J. Liu, Y. Duan, Facile synthesis of hierarchical NCs of aligned polyaniline nanorods on reduced graphene oxide nanosheets for microwave absorbing materials. RSC Adv. 7, 54031–54038 (2017)

    Article  CAS  Google Scholar 

  37. P. Paulraj, A. Umar, K. Rajendrane, A. Manikandana, R. Kumar, E. Manikandang, K. Pandianb, M.H. Mahnashi, M.A. Alsaiari, A.A. Ibrahimc, N. Bouropoulos, S. Baskoutas, Solid-state synthesis of Ag-doped PANI nanocomposites for their end-use as an electrochemical sensor for hydrogen peroxide and dopamine. Electrochim. Acta 363, 137158 (2020)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the Scientific and Technological Research Council of Turkey (TUBITAK) due to the financial support for the Project 122N962.

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

GB: Investigation, Methodology, Writing-original draf. NT: Investigation, Methodology, Formal analysis, Writing-original draft, Writing—review & editing, Visualization, Funding acquisition, Supervision. BK: Investigation, Methodology, Formal analysis, Writing-original draft. SK: Investigation, Methodology, Formal analysis, Writing-original draft, Writing—review & editing, GG: Investigation, Methodology, Formal analysis, Writing-original draft, Writing—review & editing. BB: Methodology, Formal analysis, Writing-original draft. DEY: Investigation, Methodology, Formal analysis, Writing-original draft, Writing—review & editing, Visualization, Funding acquisition, Supervision.

Corresponding authors

Correspondence to Nevin Taşaltın or Dilber Esra Yıldız.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baytemir, G., Taşaltın, N., Karaca, B. et al. PANI: silicene nanocomposites based non-enzymatic electrochemical voltammetric sensor for dopamine detection. J Mater Sci: Mater Electron 34, 1374 (2023). https://doi.org/10.1007/s10854-023-10809-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10809-9

Navigation