Skip to main content
Log in

A non-enzymatic electrochemical sensor based on polyaniline/borophene nanocomposites for dopamine detection

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Non-enzymatic electrochemical sensors are attractive because of their high sensitivity, rapid detection, low-cost and easy fabrication. Herein, a non-enzymatic electrochemical sensor based on Polyaniline/borophene nanocomposites for dopamine detection is presented. Borophene nanosheets were prepared using a clean and low-cost sonication method. The product was characterized by XRD, SEM, HRTEM and FTIR. Next, the PANI/borophene nanocomposite material was prepared and used to modify the PANI electrode for use in the detection of dopamine with cyclic voltammetry. The nanocomposite material presented the large peak currents indicating the nanocomposite reveals better electrochemical activity with the presence of borophene for dopamine detection in the concentration range of 0.15625–5 µM. At a scan rate of 50 mV/s, the PANI-based sensor exhibited a sensitivity of 153.67 μAμM−1 cm−2 with detection limit of 0.064 μM, while the PANI/borophene nanocomposite-based sensor exhibited a sensitivity of 385.05 μAμM−1 cm−2 with 0.017 μM detection limit. Due to the excellent electrochemical performance obtained in this work, PANI/borophene nanocomposites could be a promising biosensor material for dopamine electrochemical analysis for biomedical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. V. Mani, M. Govindasamy, S.-M. Chen, R. Karthik, S.-T. Huang, Determination of dopamine using a glassy carbon electrode modified with a graphene and carbon nanotube hybrid decorated with molybdenum disulfide flowers. Microchim. Acta 183, 2267–2275 (2016)

    Google Scholar 

  2. N. Chauhan, S. Soni, P. Agrawal, Y.P.S. Balhara, U. Jain, Recent advancement in nanosensors for neurotransmitters detection: present and future perspective. Process Biochem. 91, 241–259 (2020)

    Google Scholar 

  3. I. Anshori, L.N. Rizalputri, R.R. Althof, S.S. Surjadi, S. Harimurti, G. Gumilar, B. Yuliarto, M. Handayani, Functionalized multi-walled carbon nanotube/silver nanoparticle (f-MWCNT/ AgNP) nanocomposites as non-enzymatic electrochemical biosensors for dopamine detection. Nanocomposites 7(1), 97–108 (2021)

    Google Scholar 

  4. M. Amiri, S. Dadfarnia, A.M.H. Shabani, S. Sadjadi, Non-enzymatic sensing of dopamine by localized surface plasmonresonance using carbon dots-functionalized gold nanoparticles. J. Pharm. Biomed. Anal. 172, 223–229 (2019)

    Google Scholar 

  5. M. Lakshmanakumar, N. Nesakumar, A.J. Kulandaisamy, J.B.B. Rayappan, Principles and recent developments in optical and electrochemical sensing of dopamine: a comprehensive review. Measurement 183, 109873 (2021)

    Google Scholar 

  6. H. Shen, B. Jang, J. Park, H. Mun, H.-B. Cho, Y.-H. Choa, In situ synthesis of a Bi2Te3-nanosheet/reduced-graphene-oxide nanocomposite for non-enzymatic electrochemical dopamine sensing. Nanomaterials 2022, 12 (2009)

    Google Scholar 

  7. V. Carrera, E. Sabater, E. Vilanova, M.A. Sogorb, A simple and rapid HPLC–MS method for the simultaneous determination of epinephrine, norepinephrine dopamine and 5-hydroxytryptamine: application to the secretion of bovine chromaffin cell cultures. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 847(2), 88–94 (2007)

    Google Scholar 

  8. J. Deepika, R. Sha, S. Badhulika, A ruthenium(IV) disulfide based non-enzymatic sensor for selective and sensitive amperometric determination of dopamine. Microchim. Acta 186, 480 (2019)

    Google Scholar 

  9. M. Mamiński, M. Olejniczak, M. Chudy, A. Dybko, Z. Brzózka, Spectrophotometric determination of dopamine in microliter scale using microfluidic system based on polymeric technology. Anal. Chim. Acta 540(1), 153–157 (2005)

    Google Scholar 

  10. H. Abdolmohammad-Zadeh, M. Zamani-Kalajahi, A novel chemiluminescent-based nano-probe for ultra-trace quantification of dopamine in human plasma samples. Microchem. J. 155, 104704 (2020)

    Google Scholar 

  11. M.I. Khan, N. Muhammad, M. Tariq, U. Nishan, A. Razaq, T.A. Saleh, M.A. Haija, I. Ismail, A. Rahim, Non-enzymatic electrochemical dopamine sensing probe based on hexagonal shape zinc-doped cobalt oxide (Zn-Co2O4) nanostructure. Microchim. Acta 189, 37 (2022)

    Google Scholar 

  12. M. Ilgar, G. Baytemir, N. Taşaltın, S. Güllülü, I.S. Yeşilyurt, S. Karakuş, Multifunctional maca extract coated CuO nanoparticles with antimicrobial and dopamine sensing activities: A dual electrochemical – Smartphone colorimetric detection system. J. Photochem. Photobiol. A Chem. 431, 114075 (2022)

    Google Scholar 

  13. M. Sabar, U. Amara, S. Riaz, A. Hayat, M. Nasir, M.H. Nawaz, Fabrication of MoS2 enwrapped carbon cloth as electrochemical probe for non-enzymatic detection of dopamine. Mater. Lett. 308, 131233 (2022)

    Google Scholar 

  14. M. Keerthi, G. Boopathy, S.-M. Chen, T.-W. Chen, B.-S. Lou, A core-shell molybdenum nanoparticles entrapped f-MWCNTs hybrid nanostructured material based non-enzymatic biosensor for electrochemical detection of dopamine neurotransmitter in biological samples. Sci. Reports 9, 13075 (2019)

    ADS  Google Scholar 

  15. M.S. Panov, A.E. Grishankina, D.D. Stupin, A.I. Lihachev, V.N. Mironov, D.M. Strashkov, E.M. Khairullina, I.I. Tumkin, M.N. Ryazantsev, In situ laser-induced fabrication of a ruthenium-based microelectrode for non-enzymatic dopamine sensing. Materials 13(23), 5385 (2020)

    ADS  Google Scholar 

  16. M. Florescu, M. David, Tyrosinase-based biosensors for selective dopamine detection. Sensors 17, 1314 (2017)

    Google Scholar 

  17. H.Y. Yue, H.J. Zhang, S. Huang, X. Gao, S.S. Song, Z. Wang, W.Q. Wang, E.H. Guan, A novel non-enzymatic dopamine sensors based on NiO-reduced graphene oxide hybrid nanosheets. J. Mater. Sci. Mater. Electron. 30, 5000–5007 (2019)

    Google Scholar 

  18. K. Amano, H. Ishikawa, A. Kobayashi, M. Satoh, E. Hasegawa, Thermal stability of chemically synthesized polyaniline. Synth. Met. 62(3), 229–232 (1994)

    Google Scholar 

  19. J. Mathiyarasu, S. Senthilkumar, K.L.N. Phani, V. Yegnaraman, Selective detection of dopamine using a functionalised polyaniline composite electrode. J. Appl. Electrochem. 35, 513–519 (2005)

    Google Scholar 

  20. F. Zuo, L. Jin, X. Fu, H. Zhang, R. Yuan, S. Chen, An electrochemiluminescent sensor for dopamine detection based on a dual-molecule recognition strategy and polyaniline quenching. Sensors Actuators B Chem 244, 282–289 (2017)

    Google Scholar 

  21. D. Li, J.X. Huang, R.B. Kaner, Polyaniline nanofibers: a unique polymer nanostructure for versatile applications. Acc. Chem. Res. 42, 135–145 (2009)

    Google Scholar 

  22. H. Zhou, Y.P. Sun, G. Li, S.J. Chen, Y. Lu, Interfacial assembly and electrochemical properties of nafion-modified-graphene/polyaniline hollow spheres. Polymer 55, 4459–4467 (2014)

    Google Scholar 

  23. Y. Hu, Z. Zhang, H. Zhang, L. Luo, S. Yao, Electrochemical determination of l-phenylalanine at polyaniline modified carbon electrode based on β-cyclodextrin incorporated carbon nanotube composite material and imprinted sol–gel film. Talanta 84(2), 305–313 (2011)

    Google Scholar 

  24. Y.G. Liu, X.M. Feng, J.M. Shen, J.J. Zhu, W.H. Hou, Fabrication of a novel glucose biosensor based on a highly electroactive polystyrene/polyaniline/Au nanocomposite. J. Phys. Chem. B 112, 9237–9242 (2008)

    Google Scholar 

  25. L. Yang, S. Liu, Q. Zhang, F. Li, Simultaneous electrochemical determination of dopamine and ascorbic acid using AuNPs@polyaniline core–shell nanocomposites modified electrode. Talanta 89, 136–141 (2012)

    Google Scholar 

  26. W.-F. Hsu, T.-M. Wu, Electrochemical sensor based on conductive polyaniline coated hollow tin oxide nanoparticles and nitrogen doped graphene quantum dots for sensitively detecting dopamine. J. Mater. Sci.: Mater. Electron. 30, 8449–8456 (2019)

    Google Scholar 

  27. C. Ratlam, S. Phanichphant, S. Sriwichai, Development of dopamine biosensor based on polyaniline/carbon quantum dots composite. J. Polym. Res. 27, 183 (2020)

    Google Scholar 

  28. L.-Q. Xie, Y.-H. Zhang, F. Gao, Q.-A. Wu, P.-Y. Xu, S.-S. Wang, N.-N. Gao, Q.-X. Wang, A highly sensitive dopamine sensor based on a polyaniline/reduced graphene oxide/Nafion nanocomposite. Chin. Chem. Lett. 28, 41–48 (2017)

    Google Scholar 

  29. S. Goktuna, N. Tasaltin, Preparation and characterization of PANI: α borophene electrode for supercapacitors. Physica E: 134, 114833 (2021)

    Google Scholar 

  30. T.A. Türkmen, N. Taşaltın, C. Taşaltın, G. Baytemir, S. Karakuş, PEDOT: PSS/β12 borophene nanocomposites as an inorganic-organic hybrid electrode for high performance supercapacitors. Inorg. Chem. Commun. 139, 109329 (2022)

    Google Scholar 

  31. C. Taşaltın, T.A. Türkmen, N. Taşaltın, S. Karakus, Highly sensitive non-enzymatic electrochemical glucose biosensor based on PANI: b12 Borophene. J. Mater. Sci.: Mater. Electron. 32, 10750–10760 (2021)

    Google Scholar 

  32. N. Taşaltın, C. Taşaltın, S. Güngör, S. Karakuş, İ Gürol, M. Teker, Volatile organic compound detection performance of Borophene and PANI: β Borophene nanocomposite-based sensors. J. Mater. Sci. Mater. Electron. 33, 24173–24181 (2022)

    Google Scholar 

  33. S. Gungor, C. Tasaltin, I. Gurol, G. Baytemir, S. Karakus, T. Nevin, Copper phthalocyanine-borophene nanocomposite-based non-enzymatic electrochemical urea biosensor. Appl. Phys. A 128, 89 (2022)

    ADS  Google Scholar 

  34. G. Baytemir, İ Gürol, S. Karakuş, C. Taşaltın, N. Taşaltın, Nickel phthalocyanine-borophene nanocomposite-based electrodes for non-enzymatic electrochemical detection of glucose. J. Mater. Sci.: Mater. Electron. 33(20), 16586–16596 (2022)

    Google Scholar 

  35. M. Ou, X. Wang, L. Yu, C. Liu, W. Tao, X. Ji, L. Mei, The emergence and evolution of borophene. Adv. Sci. 8, 1–29 (2021)

    Google Scholar 

  36. V. Nagarajan, R. Chandiramouli, Borophene nanosheet molecular device for detection of ethanol – A first-principles study. Comput. Theor. Chem. 1105, 52–60 (2017)

    Google Scholar 

  37. B. Callmer, An accurate refinement of the [beta]-rhombohedral boron structure. Acta Crystallogr. 33, 1951–1954 (1977)

    Google Scholar 

  38. D. Ma, J. Zhao, J. Xie, F. Zhang, R. Wang, L. Wu, W. Liang, D. Li, Y. Ge, J. Li, Y. Zhang, H. Zhang, Ultrathin boron nanosheets as an emerging two-dimensional photoluminescence material for bioimaging. Nanoscale Horizons 5(4), 705–713 (2020)

    ADS  Google Scholar 

  39. H. Li, L. Jing, W. Liu, J. Lin, R.Y. Tay, S.H. Tsang, E.H.T. Teo, Scalable production of few-layer boron sheets by liquid-phase exfoliation and their superior supercapacitive performance. ACS Nano 12, 1262–1272 (2018)

    Google Scholar 

  40. M. Ni, Y. Xu, C. Wang, P. Zhao, P. Yang, C. Chen, K. Zheng, H. Wang, X. Sun, C. Li, Y. Xie, J. Fei, A novel thermo-controlled acetaminophen electrochemical sensor based on carboxylated multi-walled carbon nanotubes and thermosensitive polymer. Diam. Relat. Mater. 107, 107877 (2020)

    ADS  Google Scholar 

  41. S.J. Konopka, B. McDuffie, Diffusion coefficients of ferri- and ferrocyanide ions in aqueous media, using twin-electrode thin-layer electrochemistry. Anal. Chem. 42(14), 1741–1746 (1970)

    Google Scholar 

  42. X. Liu, J. Liu, Biosensors and sensors for dopamine detection. View 2, 1 (2021)

    Google Scholar 

  43. J. Ahmed, M. Faisal, S.S. Alsareii, M. Jalalah, F.A. Harraz, A novel gold-decorated porous silicon-poly (3-hexylthiophene) ternary nanocomposite as a highly sensitive and selective non-enzymatic dopamine electrochemical sensor. J. Alloy. Compd. 931, 167403 (2023)

    Google Scholar 

  44. S. Karakus, G. Baytemir, N. Tasaltin, Digital colorimetric and non-enzymatic biosensor with nanoarchitectonics of Lepidium meyenii-silver nanoparticles and cotton fabric: real-time monitoring of milk freshness. Appl. Phys. A 128, 390 (2022)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gülsen Baytemir.

Ethics declarations

Conflict of interest

The author declares that there are no competing financial and non-financial interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baytemir, G. A non-enzymatic electrochemical sensor based on polyaniline/borophene nanocomposites for dopamine detection. Appl. Phys. A 129, 85 (2023). https://doi.org/10.1007/s00339-022-06364-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-022-06364-5

Keywords

Navigation