Skip to main content
Log in

CoSe as highly efficient catalyst for photo-assisted activation of peroxymonosulfate for rapid degradation of phenazopyridine hydrochloride

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Catalytic activation of peroxymonosulfate (PMS) for purifying organic wastewater has been widely studied. CoSe microcubes were prepared by a facile one-step ions exchange method, which exhibited efficient redox reactions on account of the 3d configuration of Co2+ in combination with Se. Required only 1 min, 20 mg/L PhH (Phenazopyridine Hydrochloride) was decomposed completely by CoSe-10/PMS under UV–Visible light. The influence of Se ratio, pH, temperature, PMS dosage, catalyst loading and inorganic ion on PhH degradation was investigated. The degradation efficiencies of PhH by CoSe-10/PMS in tap water, river-water and reservoir water were evaluated, all of the removal efficiencies were higher than 95%. In addition, the 1O2, h+, O2·−, ·OH and SO4·− were verified in reaction by the electron paramagnetic resonance (EPR) experiments and scavenging test. After four runs, the removal efficiency of CoSe-10 was declined from 97.40 to 95.80%. Moreover, the possible cleavage paths of PhH were firstly analyzed with HPLC-MS. This work presents a strategy to prepare CoSe-10 photocatalyst with remarkable photocatalytic performance for the removal of PhH in water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Scheme 2
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Data availability

Data and materials will be availability if required.

References

  1. X.X. Zheng et al., Chem. Eng. J. 429, 132323 (2022)

    CAS  Google Scholar 

  2. J.L. Wang et al., J. Clean. Prod. 227, 1002 (2019)

    CAS  Google Scholar 

  3. Y. Gao et al., Chem. Eng. J. 429, 132387 (2022)

    CAS  Google Scholar 

  4. L.L. Wu et al., Small. 14, 1704035 (2018)

    Google Scholar 

  5. C.H. Shen et al., Chem. Eng. J. 391, 123612 (2020)

    CAS  Google Scholar 

  6. L.X. Hu et al., Chin. J. Catal. 38, 1360 (2017)

    CAS  Google Scholar 

  7. J.L. Zhu et al., Water Res. 202, 117397 (2021)

    CAS  Google Scholar 

  8. G. Wen et al., Chem. Eng. J. 402, 126207 (2020)

    CAS  Google Scholar 

  9. Meng, Xie et al., Chem. Eng. J. 360, 1213 (2019)

    Google Scholar 

  10. J. Deng et al., Chem. Eng. J. 308, 505 (2017)

    CAS  Google Scholar 

  11. W.X. Zhao et al., J. Mater. Chem. A 9, 27615 (2012)

    Google Scholar 

  12. G. Viruthagiri et al., J. Mater. Res. Technol. 8, 127 (2019)

    CAS  Google Scholar 

  13. L.L. Wang et al., Appl. Surf. Sci. 467, 954 (2019)

    Google Scholar 

  14. T.T. Cao et al., J. Mol. Liq. 362, 119622 (2022)

    CAS  Google Scholar 

  15. Z.M. Wang et al., Chem. Eng. J. 427, 130888 (2022)

    CAS  Google Scholar 

  16. T.J. Ni et al., J. Colloid Interface Sci. 615, 650 (2022)

    CAS  Google Scholar 

  17. H.F. Ma et al., Adv. Mater. 31, 1900901 (2019)

    Google Scholar 

  18. H.B. Chen et al., J. Colloid Interface Sci. 613, 103 (2022)

    CAS  Google Scholar 

  19. M. Iqbal et al., Diam. Relat. Mater. 113, 108254 (2021)

    CAS  Google Scholar 

  20. Y.J. Fang et al., Adv. Mater. 30, 1706668 (2018)

    Google Scholar 

  21. P. Khagar et al., ChemistrySelect. 6, 5043 (2021)

    CAS  Google Scholar 

  22. L.N. Wang et al., Chin. Chem Lett. 34, 108007 (2023)

    CAS  Google Scholar 

  23. L. Wang et al., Chem. Eng. J. 456, 140990 (2023)

    CAS  Google Scholar 

  24. C.Y. Xu et al., Sep. Purif. Technol. 295, 121347 (2022)

    CAS  Google Scholar 

  25. V.G. Dileepkumar et al., Chem. Eng. J. 446, 137023 (2022)

    CAS  Google Scholar 

  26. H. Wang et al., Adv. Funct. Mater. 29, 1806588 (2019)

    Google Scholar 

  27. X.Q. Ma et al., Chem. Commun. 54, 310507 (2018)

    Google Scholar 

  28. H.Q. Wang et al., J. Power Sources. 400, 232 (2018)

    CAS  Google Scholar 

  29. M. Yang et al., Electrochim. Acta. 337, 135685 (2020)

    CAS  Google Scholar 

  30. R. Lian et al., J. Alloy Compd. 924, 166590 (2022)

    CAS  Google Scholar 

  31. X.P. Qiu et al., Appl Surf. Sci. 382, 249 (2016)

    CAS  Google Scholar 

  32. X.Y. Fang et al., J. Hazard. Mater. 419, 126363 (2021)

    CAS  Google Scholar 

  33. X.Y. Wang et al., Sep. Purif. Technol. 303, 122205 (2022)

    CAS  Google Scholar 

  34. S.Z. Wang et al., Chem. Eng. J. 336, 595 (2018)

    CAS  Google Scholar 

  35. M. Xie et al., Chem. Eng. J. 360, 121 (2019)

    Google Scholar 

  36. H. Zhang et al., J. Hazard. Mater. 344, 1220 (2018)

    CAS  Google Scholar 

  37. P.Y. Motlagh et al., J. Mol. Liq. 302, 112532 (2020)

    CAS  Google Scholar 

  38. D. Roy et al., Chem. Eng. J. 430, 133069 (2022)

    CAS  Google Scholar 

  39. S. Xiao et al., Chem. Eng. J. 384, 123265 (2020)

    CAS  Google Scholar 

  40. X.G. Duan et al., ACS Catal. 5, 553 (2015)

    CAS  Google Scholar 

  41. Z. Xu et al., Appl. Catal. B Environ. 319, 121901 (2022)

    CAS  Google Scholar 

  42. W. Li et al., J. Hazard. Mater. 381, 121209 (2020)

    CAS  Google Scholar 

  43. Z.Y. Shen et al., J. Hazard. Mater. 400, 123187 (2020)

    CAS  Google Scholar 

  44. J.J. Tang et al., J. Solid State Chem. 302, 122353 (2021)

    CAS  Google Scholar 

  45. R. Bai et al., Environ. Sci. Pollut. Res. 27, 21542 (2020)

    CAS  Google Scholar 

  46. G.X. Yi et al., Appl. Surf. Sci. 593, 153244 (2022)

    CAS  Google Scholar 

  47. J.X. Xu et al., Mater. Res. Bull. 91, 1 (2017)

    CAS  Google Scholar 

  48. N. Zhou et al., J. Colloid Interface Sci. 563, 197 (2020)

    CAS  Google Scholar 

  49. X.Y. Zhang et al., J. Environ. Chem. Eng. 10, 106904 (2022)

    CAS  Google Scholar 

  50. Z.D. Li et al., Sci. Total Environ. 721, 137764 (2020)

    CAS  Google Scholar 

  51. Y.J. Dong et al., Sci. Total Environ. 662, 490 (2019)

    CAS  Google Scholar 

  52. C.G. Yu et al., Sep. Purif. Technol. 295, 121334 (2022)

    CAS  Google Scholar 

  53. P.W. Yan et al., Sep. Purif. Technol. 254, 117630 (2021)

    CAS  Google Scholar 

  54. F. Zhang et al., Chem. Eng. J. 324, 140 (2017)

    CAS  Google Scholar 

  55. A. Yousefi, Mater. Res. Bull. 148, 111669 (2022)

    CAS  Google Scholar 

  56. M. Fathiniaa et al., Appl. Catal. B Environ. 184, 270 (2016)

    Google Scholar 

Download references

Funding

This work was supported by the Ningxia Natural Science Foundation Project (Grant No. 2021AAC03242) and the Engineering Research Center of Liupanshan (Grant No. HGZD22-07). The Key Research Plan Projects of Ningxia (Grant No. 2021BEB04003).

Author information

Authors and Affiliations

Authors

Contributions

All the persons have made substantial contributions to the work reported. The first draft of the manuscript was written by ZLL, SYY and XNQ. Material preparation was performed by SYY. Data processing was performed by SYY, XRL, SL and ZRZ. Writing—Reviewing was performed by SYY and ZQW, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Zhenliang Li.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 254.5 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Yuan, S., Liu, X. et al. CoSe as highly efficient catalyst for photo-assisted activation of peroxymonosulfate for rapid degradation of phenazopyridine hydrochloride. J Mater Sci: Mater Electron 34, 1378 (2023). https://doi.org/10.1007/s10854-023-10781-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10781-4

Navigation