Skip to main content

Advertisement

Log in

Porous CuF2 integrated with a three-dimensional conductive network of CNTs as cathode materials for lithium-ion batteries

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this study, a hybrid nanostructure composed of porous CuF2 and a three-dimensional (3D) electronic network of CNTs has been successfully fabricated by a precipitation method and a following solid-state reaction process as cathode material for lithium-ion batteries. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) results demonstrate the intimate contract of CuF2 particles and the reserve of the porous structure after the addition of CNTs. Inherited the advantage of porous structure and the three-dimensional (3D) conductive network of CNTs, the CNTs/porous CuF2 composite exhibits enhanced electrochemical performance than porous CuF2, where the initial discharge capacity increases from 531 to 618 mAh g−1 at 0.1C. Moreover, electrochemical impedance spectroscopy (EIS) and galvanostatic intermittent titration technique (GITT) results demonstrate the decrease of the charge-transfer resistance and the promotion of the Li+ diffusion in virtue of CNTs. The hybrid nanostructure proposed in this work may be potentially used in other transition metal fluorides as cathode materials for lithium-ion batteries with high energy densities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

All data can be obtained from the corresponding author upon reasonable request.

Code availability

Not applicable.

References

  1. J. Lin, S. Chen, L. Zhu, Z. Yuan, J. Liu, Soft-template fabrication of hierarchical nanoparticle iron fluoride as high-capacity cathode materials for Li-ion batteries. Electrochim. Acta 364, 137293 (2020)

    Article  CAS  Google Scholar 

  2. F. Wang, S.W. Kim, D.H. Seo, K. Kang, L. Wang, D. Su, J.J. Vajo, J. Wang, J. Graetz, Ternary metal fluorides as high-energy cathodes with low cycling hysteresis. Nat. Commun. 6, 6668 (2015)

    Article  CAS  Google Scholar 

  3. J. Hao, Z. Yu, H. Liu, W. Song, J. Liu, L. Kong, C. Li, Enhancing electrochemical performances of LiNi0.5Co0.2Mn0.3O2 cathode materials derived from NiF2 artificial interface at elevated voltage. J. Alloys Compd. 806, 814–822 (2019)

    Article  CAS  Google Scholar 

  4. R. Sehrawat, A. Sil, Effect of solvents on electrochemical performance of polypyrrole coated LiFePO4/C cathode materials for Li-ion battery. J. Mater. Sci. 26, 5175–5185 (2015)

    CAS  Google Scholar 

  5. K. Du, E.H. Ang, X. Wu, Y. Liu, Progresses in sustainable recycling technology of spent lithium-ion batteries. Energy Environ. Mater. 5, 1012–1036 (2022)

    Article  CAS  Google Scholar 

  6. J. Xu, X. Cai, S. Cai, Y. Shao, C. Hu, S. Lu, S. Ding, High-energy lithium-ion batteries: recent progress and a promising future in applications. Energy Environ. Mater. 21, 121 (2022)

    Google Scholar 

  7. P. Poizot, S. Laruelle, S. Grugeon, L. Dupont, J. Tarascon, Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature 407, 496–499 (2000)

    Article  CAS  Google Scholar 

  8. W. Ren, D. Liu, C. Sun, X. Yao, J. Tan, C. Wang, K. Zhao, X. Wang, Q. Li, L. Mai, Nonhierarchical heterostructured Fe2O3/Mn2O3 porous hollow spheres for enhanced lithium storage. Small 14, 1800659 (2018)

    Article  Google Scholar 

  9. M. Yin, D. Zhao, C. Feng, W. Zhou, Q. Jiao, X. Feng, S. Wang, Y. Zhao, H. Li, T. Feng, Construction of porous Co9S8 hollow boxes with double open ends toward high-performance half/full sodium-ion batteries. ACS Sustain. Chem. Eng. 8, 6305–6314 (2020)

    Article  CAS  Google Scholar 

  10. N. Zhang, X. Xiao, H. Pang, Transition metal (Fe Co, Ni) fluoride-based materials for electrochemical energy storage. Nanoscale Horizons 4, 99–116 (2019)

    Article  CAS  Google Scholar 

  11. J. Cheng, Y. Zhou, Y. Wu, Y. Pan, X. Luo, Y. Huang, Y. Zhou, L. Zhu, Z. Yuan, Encapsulating ultrafine Fe3O4 nanoparticles into interconnected 3D multiporous carbon for superior Li-ion energy storage. J. Alloys Compd. 930, 167429 (2023)

    Article  CAS  Google Scholar 

  12. A. Jena, T.R. Penki, N. Munichandraiah, S.A. Shivashankar, Flower-like porous cobalt(II) monoxide nanostructures as anode material for Li-ion batteries. J. Electroanal. Chem. 761, 21–27 (2016)

    Article  CAS  Google Scholar 

  13. J.K. Seo, H. Cho, K. Takahara, K.W. Chapman, O.J. Borkiewicz, M. Sina, Y. Shirley Meng, A.I.U.S. Argonne National Lab. Anl, Revisiting the conversion reaction voltage and the reversibility of the CuF2 electrode in Li-ion batteries. Nano Res. 10, 4232–4244 (2017)

    Article  CAS  Google Scholar 

  14. X. Wang, W. Gu, J.T. Lee, N. Nitta, J. Benson, A. Magasinski, M.W. Schauer, G. Yushin, Carbon nanotube-CoF2 multifunctional cathode for lithium ion batteries: effect of electrolyte on cycle stability. Small 11, 5164–5173 (2015)

    Article  CAS  Google Scholar 

  15. W. Gu, A. Magasinski, B. Zdyrko, G. Yushin, Metal fluorides nanoconfined in carbon nanopores as reversible high capacity cathodes for Li and Li-Ion rechargeable batteries: FeF2 as an example. Adv. Energy Mater. 5, 1401148 (2015)

    Article  Google Scholar 

  16. E. Ji, J. Huang, Z. Yu, Q. Hu, H. Liu, C. Lai, Z. Yuan, Electrochemical characterization of CuF2/CNTs cathode materials prepared by a coprecipitation method. Funct. Mater. Lett. 15, 2251036 (2022)

    Article  CAS  Google Scholar 

  17. X. Zhao, Z. Zhao Karger, M. Fichtner, X. Shen, Halide-based materials and chemistry for rechargeable batteries. Angew. Chem. Int. Ed. 59, 5902–5949 (2020)

    Article  CAS  Google Scholar 

  18. Q. Chu, Z. Xing, J. Tian, X. Ren, A.M. Asiri, A.O. Al-Youbi, K.A. Alamry, X. Sun, Facile preparation of porous FeF3 nanospheres as cathode materials for rechargeable lithium-ion batteries. J. Power Sources 236, 188–191 (2013)

    Article  CAS  Google Scholar 

  19. J. Tan, L. Liu, H. Hu, Z. Yang, H. Guo, Q. Wei, X. Yi, Z. Yan, Q. Zhou, Z. Huang, H. Shu, X. Yang, X. Wang, Iron fluoride with excellent cycle performance synthesized by solvothermal method as cathodes for lithium ion batteries. J. Power Sources 251, 75–84 (2014)

    Article  CAS  Google Scholar 

  20. F. Wu, V. Srot, S. Chen, M. Zhang, P.A. van Aken, Y. Wang, J. Maier, Y. Yu, Metal-organic framework-derived nanoconfinements of CoF2 and mixed-conducting wiring for high-performance metal fluoride-lithium battery. ACS Nano 15, 1509–1518 (2021)

    Article  CAS  Google Scholar 

  21. B. Li, Z. Cheng, N. Zhang, K. Sun, Self-supported, binder-free 3D hierarchical iron fluoride flower-like array as high power cathode material for lithium batteries. Nano Energy 4, 7–13 (2014)

    Article  CAS  Google Scholar 

  22. L. Li, F. Meng, S. Jin, High-capacity lithium-ion battery conversion cathodes based on iron fluoride nanowires and insights into the conversion mechanism. Nano Lett. 12, 6030–6037 (2012)

    Article  CAS  Google Scholar 

  23. Z. Long, W. Hu, L. Liu, G. Qiu, W. Qiao, X. Guan, X. Qiu, Mesoporous iron trifluoride microspheres as cathode materials for Li-ion batteries. Electrochim. Acta 151, 355–362 (2015)

    Article  CAS  Google Scholar 

  24. J. Lin, L. Zhu, S. Chen, Q. Li, Z. He, Z. Cai, L. Cao, Z. Yuan, J. Liu, Self-templated formation of hollow yolk-like spheres iron fluoride as cathode material for high-performance Li-Ion batteries. J. Electrochem. Soc. 166, A2074–A2082 (2019)

    Article  CAS  Google Scholar 

  25. H. Sun, H. Zhou, Z. Xu, J. Ding, J. Yang, X. Zhou, Preparation of anhydrous iron fluoride with porous fusiform structure and its application for Li-ion batteries. Microporous Mesoporous Mater. 253, 10–17 (2017)

    Article  CAS  Google Scholar 

  26. Q. Guan, J. Cheng, X. Li, W. Ni, B. Wang, Porous CoF2 spheres synthesized by a one-pot solvothermal method as high capacity cathode materials for lithium-ion batteries. Chin. J. Chem. 35, 48–54 (2017)

    Article  CAS  Google Scholar 

  27. L. Liu, M. Zhou, X. Wang, Z. Yang, F. Tian, X. Wang, Synthesis and electrochemical performance of spherical FeF3/ACMB composite as cathode material for lithium-ion batteries. J. Mater. Sci. 47, 1819–1824 (2012)

    Article  CAS  Google Scholar 

  28. S. Kim, D. Seo, H. Gwon, J. Kim, K. Kang, Fabrication of FeF3 nanoflowers on CNT branches and their application to high power lithium rechargeable batteries. Adv. Mater. 22, 5260–5264 (2010)

    Article  CAS  Google Scholar 

  29. T. Krahl, F. Marroquin Winkelmann, A. Martin, N. Pinna, E. Kemnitz, Novel synthesis of anhydrous and hydroxylated CuF2 nanoparticles and their potential for lithium ion batteries. Chemistry 24, 7177–7187 (2018)

    Article  CAS  Google Scholar 

  30. F. Badway, A.N. Mansour, N. Pereira, J.F. Al-Sharab, F. Cosandey, I. Plitz, G.G. Amatucci, Structure and electrochemistry of copper fluoride nanocomposites utilizing mixed conducting matrices. Chem. Mater. 19, 4129–4141 (2007)

    Article  CAS  Google Scholar 

  31. Z. Wang, D. Luan, S. Madhavi, Y. Hu, X.W.D. Lou, Assembling carbon-coated α-Fe2O3 hollow nanohorns on the CNT backbone for superior lithium storage capability. Energy Environ. Sci. 5, 5252–5256 (2012)

    Article  CAS  Google Scholar 

  32. Y. Hou, Y. Cheng, T. Hobson, J. Liu, Design and synthesis of hierarchical MnO2 nanospheres/carbon nanotubes/conducting polymer ternary composite for high performance electrochemical electrodes. Nano Lett. 10, 2727–2733 (2010)

    Article  CAS  Google Scholar 

  33. Y. Duan, B. Zhang, J. Zheng, J. Hu, J. Wen, D.J. Miller, P. Yan, T. Liu, H. Guo, W. Li, X. Song, Z. Zhuo, C. Liu, H. Tang, R. Tan, Z. Chen, Y. Ren, Y. Lin, W. Yang, C. Wang, L. Wang, J. Lu, K. Amine, F. Pan, Excess Li-Ion storage on reconstructed surfaces of nanocrystals to boost battery performance. Nano Lett. 17, 6018–6026 (2017)

    Article  CAS  Google Scholar 

  34. M. Keppeler, M. Srinivasan, Interfacial phenomena/capacities beyond conversion reaction occurring in nano-sized transition-metal-oxide-based negative electrodes in lithium-ion batteries: a review. ChemElectroChem 4, 2727–2754 (2017)

    Article  CAS  Google Scholar 

  35. T. Li, L. Li, Y.L. Cao, X.P. Ai, H.X. Yang, Reversible three-electron redox behaviors of FeF3 nanocrystals as high-capacity cathode-active materials for Li-Ion batteries. J. Phys. Chem. C 114, 3190–3195 (2010)

    Article  CAS  Google Scholar 

  36. F. Ma, H. Hu, H.B. Wu, C. Xu, Z. Xu, L. Zhen, X.W. Lou, Formation of uniform Fe3O4 hollow spheres organized by ultrathin nanosheets and their excellent lithium storage properties. Adv. Mater. 27, 4097–4101 (2015)

    Article  CAS  Google Scholar 

  37. Z. Li, Y. Yang, G. Ding, L. Wei, G. Yao, H. Niu, F. Zheng, Q. Chen, Optimizing the nitrogen configuration in interlayer-expanded carbon materials via sulfur-bridged bonds toward remarkable energy storage performances. J. Mater. Chem. A 10, 10033–10042 (2022)

    Article  CAS  Google Scholar 

  38. K. Chu, X. Zhang, Y. Yang, Z. Li, L. Wei, G. Yao, F. Zheng, Q. Chen, Edge-nitrogen enriched carbon nanosheets for potassium-ion battery anodes with an ultrastable cycling stability. Carbon 184, 277–286 (2021)

    Article  CAS  Google Scholar 

  39. F. Zheng, K. Chu, Y. Yang, Z. Li, L. Wei, Y. Xu, G. Yao, Q. Chen, Optimizing the interlayer spacing of heteroatom-doped carbon nanofibers toward ultrahigh potassium-storage performances. ACS Appl. Mater. Interfaces 14, 9212–9221 (2022)

    Article  CAS  Google Scholar 

  40. P. Niu, Y. Yang, Z. Li, G. Ding, L. Wei, G. Yao, H. Niu, Y. Min, F. Zheng, Q. Chen, Rational design of a hollow porous structure for enhancing diffusion kinetics of K ions in edge-nitrogen doped carbon nanorods. Nano Res. 15, 8109–8117 (2022)

    Article  CAS  Google Scholar 

  41. X. Hua, R. Robert, L. Du, K.M. Wiaderek, M. Leskes, K.W. Chapman, P.J. Chupas, C.P. Grey, Comprehensive study of the CuF2 conversion reaction mechanism in a lithium ion battery. J. Phys. Chem. C 118, 15169–15184 (2014)

    Article  CAS  Google Scholar 

  42. W. Weppner, R.A. Huggins, Determination of the kinetic parameters of mixed-conducting electrodes and application to the system Li3Sb. J. Electrochem. Soc. 124, 1569 (1977)

    Article  CAS  Google Scholar 

  43. H. Li, Y. Wang, J. Jiang, Y. Zhang, Y. Peng, J. Zhao, CuS microspheres as high-performance anode material for Na-ion batteries. Electrochim. Acta 247, 851–859 (2017)

    Article  CAS  Google Scholar 

  44. F. Eveillard, F. Leroux, N. Batisse, D. Delbègue, K. Guérin, Copper-iron ternary metal fluorides from multi-metallic template fluorination and their first use as cathode in solid state Li-batteries. J. Solid State Chem. 310, 123031 (2022)

    Article  CAS  Google Scholar 

  45. J. Xia, Z. Wang, N.D. Rodrig, B. Nan, J. Zhang, W. Zhang, B.L. Lucht, C. Yang, C. Wang, Super-reversible CuF2 cathodes enabled by Cu2+-oordinated alginate. Adv. Mater. 34, 2205229 (2022)

    Article  CAS  Google Scholar 

  46. Y.T. Teng, S.S. Pramana, J. Ding, T. Wu, R. Yazami, Investigation of the conversion mechanism of nanosized CoF2. Electrochim. Acta 107, 301–312 (2013)

    Article  CAS  Google Scholar 

  47. F. Wang, R. Robert, N.A. Chernova, N. Pereira, F. Omenya, F. Badway, X. Hua, M. Ruotolo, R. Zhang, L. Wu, V. Volkov, D. Su, B. Key, M.S. Whittingham, C.P. Grey, G.G. Amatucci, Y. Zhu, J. Graetz, Conversion reaction mechanisms in lithium ion batteries: study of the binary metal fluoride electrodes. J. Am. Chem. Soc. 133, 18828–18836 (2011)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Natural Science Foundation of China (Grant No. 51790490).

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

QH contributed to material preparation, data collection, analysis and writing-original draft. ZY contributed to data analyzing, writing-reviewing and editing. LT, YZ, HL, CL and ZY contributed to discussion and data curation.

Corresponding author

Correspondence to Zhiyong Yu.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest in preparing this article.

Ethical approval

Ethical approval was not required for this research.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 229 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, Q., Yu, Z., Tian, L. et al. Porous CuF2 integrated with a three-dimensional conductive network of CNTs as cathode materials for lithium-ion batteries. J Mater Sci: Mater Electron 34, 1076 (2023). https://doi.org/10.1007/s10854-023-10501-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10501-y

Navigation