Skip to main content

Advertisement

Log in

Pseudocapacitance behavior of copper and nickel co-doped zinc oxide nanoparticles with enhanced photocatalytic performance

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this study, pure zinc oxide (ZnO) and Zn0.98−xCu0.02NixO (where x = 0.01, 0.03, 0.06) nanoparticles (NPs) were synthesized through the method of chemical co-precipitation. The TG-DTA, XRD, FT-IR, SEM, HR-TEM, UV–Visible DRS, XPS, Photocatalysis, and CV analysis were used to examine pure ZnO and Cu–Ni co-doped ZnO NPs. The thermal stability of synthesized NPs is confirmed by TG- DTA. The XRD verifies that hexagonal wurtzite has a decreasing crystallite size and an inverse relationship with an increasing optical band gap. The surface morphology shows the formation of well-defined nano-spherical shapes. The HR-TEM analysis determines that the particle size decreases with co-doping Cu and Ni to ZnO NPs. The photocatalytic activity was carried out using methylene blue dye under solar irradiation. The photodegradation efficiency of pure ZnO NPs improved when Cu and Ni were co-doped in ZnO NPs. The electrochemical analysis reveals the excellent specific capacitance of 596.43 F/g at a 10 mV/s scan rate for the Zn0.92Cu0.02Ni0.06O electrode. The GCD analysis finds that the Zn0.92Cu0.02Ni0.06O electrode has 0.35 kW/kg power density and 128.76 Wh/kg energy density. The experimental findings show that incorporating Cu and Ni in the ZnO matrix boosts photocatalytic activity and electrochemical performance. So, the synthesized NPs are considered potential materials for wastewater treatment and supercapacitor applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Data availability

The data that support the findings of this study will be made available at reasonable request from the corresponding author. However, the data are not publicly available due to privacy or ethical restrictions.

References

  1. M.C. Uribe-López, M.C. Hidalgo-López, R. López-González, D.M. Frías-Márquez, G. Núñez-Nogueira, D. Hernández-Castillo, M.A. Alvarez-Lemus, Photocatalytic activity of ZnO nanoparticles and the role of the synthesis method on their physical and chemical properties. J. Photochem. Photobiol., A 404, 112866 (2021)

    Article  Google Scholar 

  2. G. Rajesh, S. Akilandeswari, D. Govindarajan, K. Thirumalai, Facile precipitation synthesis, structural, morphological, photoluminescence and photocatalytic properties of Ni-doped ZrO2 nanoparticles. Mater. Res. Express 6(10), 1050a9 (2019)

    Article  CAS  Google Scholar 

  3. S. Asaithambi, R. Murugan, P. Sakthivel, M. Karuppaiah, S. Rajendran, G. Ravi, Influence of Ni doping in SnO2 nanoparticles with enhanced visible light photocatalytic activity for degradation of methylene blue dye. J. Nanosci. Nanotechnol. 19(8), 4438–4446 (2019)

    Article  CAS  Google Scholar 

  4. S. Asaithambi, P. Sakthivel, M. Karuppaiah, Y. Hayakawa, A. Loganathan, G. Ravi, Improved photocatalytic performance of nanostructured SnO2 via addition of alkaline earth metals (Ba2+, Ca2+, and Mg2+) under visible light irradiation. Appl. Phys. A 126(4), 1–12 (2020)

    Article  Google Scholar 

  5. P. Wu, L.Y. Jiang, Z. He, Y. Song, Treatment of metallurgical industry wastewater for organic contaminant removal in China: status, challenges, and perspectives. Environ. Sci.: Water Res. Technol. 3(6), 1015–1031 (2017)

    CAS  Google Scholar 

  6. İ Akanyeti, A. Kraft, M.C. Ferrari, Hybrid polystyrene nanoparticle-ultrafiltration system for hormone removal from water. J. Water Process Eng. 17, 102–109 (2017)

    Article  Google Scholar 

  7. A. Ahmad, S.H. Mohd-Setapar, C.S. Chuong, A. Khatoon, W.A. Wani, R. Kumar, M. Rafatullah, Recent advances in new generation dye removal technologies: novel search for approaches to reprocess wastewater. RSC Adv. 5(39), 30801–30818 (2015)

    Article  CAS  Google Scholar 

  8. F. Wang, X. Wu, X. Yuan, Z. Liu, Y. Zhang, L. Fu, W. Huang, Latest advances in supercapacitors: from new electrode materials to novel device designs. Chem. Soc. Rev. 46(22), 6816–6854 (2017)

    Article  CAS  Google Scholar 

  9. S. Sivakumar, N.A. Mala, Synthesis and characterization of manganese doping on NiO nanoparticles and its supercapacitor applications. Mater. Today: Proc. 49, 1469–1474 (2022)

    CAS  Google Scholar 

  10. L. Lin, H. Xing, R. Shu, L. Wang, X. Ji, D. Tan, Y. Gan, Preparation and microwave absorption properties of multi-walled carbon nanotubes decorated with Ni-doped SnO2 nanocrystals. RSC Adv. 5(115), 94539–94550 (2015)

    Article  CAS  Google Scholar 

  11. K. Pathakoti, M. Manubolu, H.M. Hwang, Nanotechnology applications for environmental industry, in Handbook of nanomaterials for industrial applications. (Elsevier, Amsterdam, 2018), pp.894–907

    Chapter  Google Scholar 

  12. A. Mohan, V. Manikandan, S. Devanesan, M.S. AlSalhi, C. Rajeevgandhi, S. Guo, L. Guganathan, Nanostructured nickel doped zinc oxide material suitable for magnetic, supercapacitor applications and theoretical investigation. Chemosphere 299, 134366 (2022)

    Article  CAS  Google Scholar 

  13. D. Anbuselvan, S. Muthukumaran, M. Ashokkumar, Band gap tailoring, structural and morphological behavior of Zn09.6-xCo0.04CuxO (0≤ x≤ 0.10) alloys by sol–gel method. J. Mater. Sci.: Mater. Electron. 25(4), 20–201 (2014)

    Google Scholar 

  14. S. Sivakumar, Y. Robinson, Annealing effects on NiO nanoparticles for magnetic behaviour and antibacterial activity. Nanomater. Energy 11, 1–9 (2022)

    Article  Google Scholar 

  15. P.D. Cozzoli, M.L. Curri, A. Agostiano, G. Leo, M. Lomascolo, ZnO nanocrystals by a non-hydrolytic route: synthesis and characterization. J. Phys. Chem. B 107(20), 4756–4762 (2003)

    Article  CAS  Google Scholar 

  16. C.J. Cong, J.H. Hong, K.L. Zhang, Effect of atmosphere on the magnetic properties of the co-doped ZnO magnetic semiconductors. Mater. Chem. Phys. 113(1), 435–440 (2009)

    Article  CAS  Google Scholar 

  17. O. Bayram, E. Sener, E. İgman, O. Simsek, Investigation of structural, morphological and optical properties of Nickel-doped Zinc oxide thin films fabricated by co-sputtering. J. Mater. Sci.: Mater. Electron. 30(4), 3452–3458 (2019)

    CAS  Google Scholar 

  18. D. Anbuselvan, S. Muthukumaran, Defect related microstructure, optical and photoluminescence behaviour of Ni, Cu co-doped ZnO nanoparticles by co-precipitation method. Opt. Mater. 42, 124–131 (2015)

    Article  CAS  Google Scholar 

  19. A. Muiruri, M. Maringa, W. du Preez, Evaluation of dislocation densities in various microstructures of additively manufactured Ti6Al4V (ELI) by the method of x-ray diffraction. Materials 13(23), 5355 (2020)

    Article  CAS  Google Scholar 

  20. S. Thambidurai, P. Gowthaman, M. Venkatachalam, S. Suresh, M. Kandasamy, Morphology dependent photovoltaic performance of zinc oxide-cobalt oxide nanoparticle/nanorod composites synthesized by simple chemical co-precipitation method. J. Alloy. Compd. 852, 156997 (2021)

    Article  CAS  Google Scholar 

  21. P.K. Sharma, R.K. Dutta, A.C. Pandey, Effect of nickel doping concentration on structural and magnetic properties of ultrafine diluted magnetic semiconductor ZnO nanoparticles. J. Magn. Magn. Mater. 321(20), 3457–3461 (2009)

    Article  CAS  Google Scholar 

  22. S. Sivakumar, N.A. Mala, K.M. Batoo, M.F. Ijaz, Conserved crystal phase and morphology: electrochemical supremacy of copper (Cu) and iron (Fe) dual-doped nickel oxide and its supercapacitor applications. Inorg. Chem. Commun. 134, 108959 (2021)

    Article  CAS  Google Scholar 

  23. P.P. Hankare, P.A. Chate, D.J. Sathe, P.A. Chavan, V.M. Bhuse, Effect of thermal annealing on properties of zinc selenide thin films deposited by chemical bath deposition. J. Mater. Sci.: Mater. Electron. 20(4), 374–379 (2009)

    CAS  Google Scholar 

  24. T.J.S.M. Ungar, Microstructural parameters from X-ray diffraction peak broadening. Scripta Mater. 51(8), 777–781 (2004)

    Article  CAS  Google Scholar 

  25. M.A. Dar, M.Y. Bhat, N.A. Mala, H.A. Rather, S. Venkatachalam, N. Srinivasan, Structural, morphological and supercapacitor applications of SnS nanomaterials prepared in three different types of solvents. Mater. Today: Proc. 66, 1689–1698 (2022)

    Google Scholar 

  26. S. Sivakumar, Y. Robinson, N.A. Mala, Studies on photocatalytic performance and supercapacitor applications of undoped and Cu-doped ZnO nanoparticles. Appl. Surf. Sci. Adv. 12, 100344 (2022)

    Article  Google Scholar 

  27. M. Sajjad, I. Ullah, M.I. Khan, J. Khan, M.Y. Khan, M.T. Qureshi, Structural and optical properties of pure and copper doped zinc oxide nanoparticles. Result Phys 9, 1301–1309 (2018)

    Article  Google Scholar 

  28. M.A. Dar, D. Govindarajan, K.M. Batoo, C. Siva, Supercapacitor and magnetic properties of Fe doped SnS nanoparticles synthesized through solvothermal method. J. Energy Storage 52, 105034 (2022)

    Article  Google Scholar 

  29. R. Priya, P. Sahay, N. Saxena, P. Rajput, V. Chawla, R. Sharma, R. Krishna, Systematic study of Ni, Cu co-doped ZnO nanoparticles for UV photodetector application. J. Mater. Sci.: Mater. Electron. 32(2), 2011–2025 (2021)

    CAS  Google Scholar 

  30. A. Khalid, P. Ahmad, A.I. Alharthi, S. Muhammad, M.U. Khandaker, M.R.I. Faruque, D.A. Bradley, Enhanced optical and antibacterial activity of hydrothermally synthesized cobalt-doped zinc oxide cylindrical microcrystals. Materials 14(12), 3223 (2021)

    Article  CAS  Google Scholar 

  31. H.N. Abdelhamid, S.A. Al Kiey, W. Sharmoukh, A high-performance hybrid supercapacitor electrode based on ZnO/nitrogen-doped carbon nanohybrid. Appl. Organomet. Chem. 36(1), 6486 (2022)

    Article  Google Scholar 

  32. C.X. Xu, X.W. Sun, X.H. Zhang, L. Ke, S.J. Chua, Photoluminescent properties of copper-doped zinc oxide nanowires. Nanotechnology 15(7), 856 (2004)

    Article  CAS  Google Scholar 

  33. X. Cai, Y. Cai, Y. Liu, H. Li, F. Zhang, Y. Wang, Structural and photocatalytic properties of nickel-doped zinc oxide powders with variable dopant contents. J. Phys. Chem. Solids 74(9), 1196–1203 (2013)

    Article  CAS  Google Scholar 

  34. L.A. Chanu, K.J. Singh, K.N. Devi, Study on the photocatalytic activity of metal oxide nanoparticles towards the degradation of some organic dyes. Integr. Ferroelectr. 204(1), 90–99 (2020)

    Article  CAS  Google Scholar 

  35. S.A. Sawant, S.P. Somani, S.K. Omanwar, P.R. Somani, Photocatalytic degradation of methylene blue dye in distilled and sea water using indian edible chuna (Calcium Oxide/Hydroxide) as photocatalyst. Adv. Sci. Eng. Med. 6(2), 227–230 (2014)

    Article  CAS  Google Scholar 

  36. E. Sindhuja, K. Ravichandran, Cost-effective fabrication of (g-C3N4+Mo) added photostable ZnO thin films for enhanced visible light responsive photocatalytic dye degradation. Mater. Res. Bull. 103, 299–308 (2018)

    Article  CAS  Google Scholar 

  37. A. Lassoued, M.S. Lassoued, B. Dkhil, S. Ammar, A. Gadri, Retracted article: photocatalytic degradation of methylene blue dye by iron oxide (α-Fe2O3) nanoparticles under visible irradiation. J. Mater. Sci.: Mater. Electron. 29(10), 8142–8152 (2018)

    CAS  Google Scholar 

  38. R. Saravanan, V.K. Gupta, V. Narayanan, A. Stephen, Comparative study on photocatalytic activity of ZnO prepared by different methods. J. Mol. Liq. 181, 133–141 (2013)

    Article  CAS  Google Scholar 

  39. S. Vignesh, G. Palanisamy, M. Srinivasan, N. Elavarasan, K. Bhuvaneswari, G. Venkatesh, T. Pazhanivel, P. Ramasamy, M. Aslam Manthrammel, M. Shkir, Fabricating SnO2 and Cu2O anchored on g-C3N4 nanocomposites for superior photocatalytic various organic pollutants degradation under simulated sunlight exposure. Diam. Relat. Mater. 120, 108606 (2021)

    Article  CAS  Google Scholar 

  40. Z.A.C. Ramli, N. Asim, W.N. Isahak, Z. Emdadi, N. Ahmad-Ludin, M.A. Yarmo, K. Sopian, Photocatalytic degradation of methylene blue under UV light irradiation on prepared carbonaceous TiO2. Sci. World J. 2014, 1 (2014)

    Article  Google Scholar 

  41. S. Balu, K. Uma, G.T. Pan, T.C.K. Yang, S.K. Ramaraj, Degradation of methylene blue dye in the presence of visible light using SiO2@ α-Fe2O3 nanocomposites deposited on SnS2 flowers. Materials 11(6), 1030 (2018)

    Article  Google Scholar 

  42. J.J. Samuel, F.K. Yam, Photocatalytic degradation of methylene blue under visible light by dye sensitized titania. Mater. Res. Express 7(1), 015051 (2020)

    Article  CAS  Google Scholar 

  43. S. Alkaykh, A. Mbarek, E.E. Ali-Shattle, Photocatalytic degradation of methylene blue dye in aqueous solution by MnTiO3 nanoparticles under sunlight irradiation. Heliyon 6(4), e03663 (2020)

    Article  Google Scholar 

  44. S. Sivakumar, N.A. Mala, K.M. Batoo, E.H. Raslan, Efficient, highly stable Zn2+ doped NiO nanoparticles with enhanced magnetic and supercapacitor applications. Mater. Technol. 37(10), 1375–1387 (2022)

    Article  CAS  Google Scholar 

  45. N.A. Mala, M.A. Dar, S. Sivakumar, S. Husain, K.M. Batoo, Enhanced electrochemical properties of zinc and manganese co-doped NiO nanostructures for its high-performance supercapacitor applications. Inorg. Chem. Commun. 142, 109661 (2022)

    Article  CAS  Google Scholar 

  46. R.S. Ray, B. Sarma, M. Misra, Random shaped ZnO supported on a porous substrate as supercapacitor. Mater. Lett. 155, 102–105 (2015)

    Article  CAS  Google Scholar 

  47. A.C. Dhanemozhi, V. Rajeswari, S. Sathyajothi, Green synthesis of zinc oxide nanoparticle using green tea leaf extract for supercapacitor application. Mater. Today: Proc. 4(2), 660–667 (2017)

    Google Scholar 

  48. A.D. Adhikari, R. Oraon, S.K. Tiwari, N.K. Jena, J.H. Lee, N.H. Kim, G.C. Nayak, Polyaniline-stabilized intertwined network-like Ferrocene/Graphene nanoarchitecture for supercapacitor application. Chem—An Asian J. 12(8), 900–909 (2017)

    Article  Google Scholar 

  49. P.K. Singh, A.K. Das, G. Hatui, G.C. Nayak, Shape controlled green synthesis of CuO nanoparticles through ultrasonic assisted electrochemical discharge process and its application for supercapacitor. Mater. Chem. Phys. 198, 16–34 (2017)

    Article  CAS  Google Scholar 

  50. I. Shaheen, K.S. Ahmad, C. Zequine, R.K. Gupta, A.G. Thomas, M.A. Malik, Facile ZnO-based nanomaterial and its fabrication as a supercapacitor electrode: synthesis, characterization and electrochemical studies. RSC Adv. 11(38), 23374–23384 (2021)

    Article  CAS  Google Scholar 

  51. Y. Gai, Y. Shang, L. Gong, L. Su, L. Hao, F. Dong, J. Li, A self-template synthesis of porous ZnCo2O4 microspheres for high-performance quasi-solid-state asymmetric supercapacitors. RSC Adv. 7(2), 1038–1044 (2017)

    Article  CAS  Google Scholar 

  52. G. Wu, Y. Song, J. Wan, C. Zhang, F. Yin, Synthesis of ultrafine ZnO nanoparticles supported on nitrogen-doped ordered hierarchically porous carbon for supercapacitor. J. Alloy. Compd. 806, 464–470 (2019)

    Article  CAS  Google Scholar 

  53. M.S. Yadav, N. Singh, A. Kumar, Synthesis and characterization of zinc oxide nanoparticles and activated charcoal based nanocomposite for supercapacitor electrode application. J. Mater. Sci.: Mater. Electron. 29(8), 6853–6869 (2018)

    CAS  Google Scholar 

  54. K.K. Purushothaman, V.S. Priya, S. Nagamuthu, S. Vijayakumar, G. Muralidharan, Synthesizing of ZnO nanopetals for supercapacitor applications. Micro Nano Lett. 6(8), 668–670 (2011)

    Article  CAS  Google Scholar 

  55. N. Kandhasamy, G. Ramalingam, G. Murugadoss, M.R. Kumar, G. Manibalan, R. JothiRamalingam, H.M. Yadav, Copper and zinc oxide anchored silica microsphere: a superior pseudocapacitive positive electrode for aqueous supercapacitor applications. J. Alloy. Compd. 888, 161489 (2021)

    Article  CAS  Google Scholar 

  56. S.B. Kulkarni, U.M. Patil, I. Shackery, J.S. Sohn, S. Lee, B. Park, S. Jun, High-performance supercapacitor electrode based on a polyaniline nanofibers/3D graphene framework as an efficient charge transporter. J. Mater. Chem. A 2(14), 4989–4998 (2014)

    Article  CAS  Google Scholar 

  57. M. Shi, P. Xiao, J. Lang, C. Yan, X. Yan, Porous g-C3N4 and MXene dual-confined FeOOH quantum dots for superior energy storage in an ionic liquid. Adv. Sci. 7(2), 1901975 (2020)

    Article  CAS  Google Scholar 

  58. M. Davis, C. Gümeci, B. Black, C. Korzeniewski, L. Hope-Weeks, Tailoring cobalt doped zinc oxide nanocrystals with high capacitance activity: factors affecting structure and surface morphology. RSC Adv. 2(5), 2061–2066 (2012)

    Article  CAS  Google Scholar 

  59. M. Arunkumar, A. Paul, Importance of electrode preparation methodologies in supercapacitor applications. ACS Omega 2(11), 8039 (2017)

    Article  Google Scholar 

  60. K. Pradeeswari, A. Venkatesan, P. Pandi, K. Karthik, K.H. Krishna, R.M. Kumar, Study on the electrochemical performance of ZnO nanoparticles synthesized via non-aqueous sol-gel route for supercapacitor applications. Mater. Res. Express 6(10), 105525 (2019)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors are thankful to the Centralized Instrumentation and Service Laboratory (CISL), Annamalai University, for providing their analytical instrument facilities and gratefully acknowledge support by RUSA 2.0 under the Ministry of Human Resource Development, Department of Higher Education, Government of India.

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

YR contributed to conceptualization, methodology, formal analysis, visualization, data analysis, compiled the original draft, writing and editing of the manuscript; NAM contributed to conceptualization, formal analysis, writing and editing of the manuscript; SS contributed to conceptualization, supervision and visualization.

Corresponding author

Correspondence to S. Sivakumar.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

The authors formally declare that the present paper has complied with ethical standards.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sivakumar, S., Robinson, Y. & Mala, N.A. Pseudocapacitance behavior of copper and nickel co-doped zinc oxide nanoparticles with enhanced photocatalytic performance. J Mater Sci: Mater Electron 34, 978 (2023). https://doi.org/10.1007/s10854-023-10427-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10427-5

Navigation