Skip to main content
Log in

Synthesis and characterization of g-C3N4@ZrO2 composites through calcination method for enhanced photocatalytic activities

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

A series of g-C3N4@ZrO2 composites with a porous structure are synthesized by mixing MOF-808 precursor and melamine by thermal decomposition in air. The catalyst demonstrated excellent photocatalytic activity in the degrading of ciprofloxacin (CIP) and rhodamine B (RhB) dyes under visible light. The degradation of CIP by the catalyst corresponds to first-order kinetics and CZ-100 has the best degradation property, and almost nearly degrades RhB within 50 min. Radical trapping experiments indicated that ·O2 and h+ were the main factors to the degrading of RhB. According to the relevant literature, the possible ways of CIP degradation are proposed, the intermediate reaction products in the photocatalytic degradation process are analyzed, and the photoelectrochemical properties of the materials are investigated by characterization techniques such as photoluminescence emission spectroscopy and electrochemical impedance. The main reason of catalytic performance improvement is to facilitate electron and hole effective separation, and finally the probable photocatalytic mechanism of g-C3N4@ZrO2 is suggested. After 5 cycle experiments, the degradation rate of the material still reached more than 85%. It shows that g-C3N4@ZrO2 has good photocatalytic stability and repeatability, and has broad application prospects in water pollution control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Q. Wang, Q. Gao, A.M. Al-Enizi, A. Nafady, S. Ma, Recent advances in MOF-based photocatalysis: environmental remediation under visible light. Inorg. Chem. Front. 7(2), 300–339 (2020)

    Article  CAS  Google Scholar 

  2. M. dAadil, M. Mahmood, M.F. Warsi, I.A. Alsafari, S. Zulfiqar, M. Shahid, Fabrication of MnO2 nanowires and their nanohybrid with flat conductive matrix for the treatment of industrial effluents. FlatChem 30, 100316 (2021)

    Article  Google Scholar 

  3. C. Karthikeyan, P. Arunachalam, K. Ramachandran, A.M. Al-Mayouf, S. Karuppuchamy, Recent advances in semiconductor metal oxides with enhanced methods for solar photocatalytic applications. J. Alloys Compd. 828, 154281 (2020)

    Article  CAS  Google Scholar 

  4. X. Feng, Z. Yu, Y. Sun, M. Shan, R. Long, X. Lie, 3D MXene/Ag2S material as Schottky junction catalyst with stable and enhanced photocatalytic activity and photocorrosion resistance. Sep. Purif. Technol. 266, 118606 (2021)

    Article  CAS  Google Scholar 

  5. S. Gautam, H. Agrawal, M. Thakur, A. Akbari, H. Sharda, R. Kaur, M. Amini, Metal oxides and metal organic frameworks for the photocatalytic degradation: a review. J. Environ. Chem. Eng. 8(3), 103726 (2020)

    Article  CAS  Google Scholar 

  6. Y.L. Wang, S. Zhang, Y.F. Zhao, J. Bedia, J.J. Rodriguez, C. Belver, UiO-66-based metal organic frameworks for the photodegradation of acetaminophen under simulated solar irradiation. J. Environ. Chem. Eng. 9(5), 106087 (2021)

    Article  CAS  Google Scholar 

  7. T. Chen, S. Han, Z. Wang, H. Gao, L. Wang, Y. Deng, C. Wan, Y. Tian, Q. Wang, G. Wang, G. Li, Modified UiO-66 frameworks with methylthio, thiol and sulfonic acid function groups: The structure and visible-light-driven photocatalytic property study. Appl. Catal. B 259, 118047 (2019)

    Article  CAS  Google Scholar 

  8. S. Mao, Y. Zou, G. Sun, L. Zeng, Z. Wang, D. Ma, Y. Guo, Y. Cheng, C. Wang, J. Shi, Thio linkage between CdS quantum dots and UiO-66-type MOFs as an effective transfer bridge of charge carriers boosting visible-light-driven photocatalytic hydrogen production. J. Colloid Interface Sci. 581, 1–10 (2021)

    Article  CAS  Google Scholar 

  9. Q. Liang, J. Chen, F. Wang, Y. Li, Transition metal-based metal-organic frameworks for oxygen evolution reaction. Coord. Chem. Rev. 424, 213488 (2020)

    Article  CAS  Google Scholar 

  10. M. Ismael, A review on graphitic carbon nitride (g-C3N4) based nanocomposites: synthesis, categories, and their application in photocatalysis. J. Alloys Compd. 846, 156446 (2020)

    Article  CAS  Google Scholar 

  11. Y. Shi, L. Li, Z. Xu, H. Sun, F. Guo, W. Shi, One-step simple green method to prepare carbon-doped graphitic carbon nitride nanosheets for boosting visible-light photocatalytic degradation of tetracycline. J. Chem. Technol. Biotechnol. 96(11), 3122–3133 (2021)

    Article  CAS  Google Scholar 

  12. S. Thaweesak, S. Wang, M. Lyu, M. Xiao, P. Peerakiatkhajohn, L. Wang, Boron-doped graphitic carbon nitride nanosheets for enhanced visible light photocatalytic water splitting. Dalton Trans. 46(32), 10714–10720 (2017)

    Article  CAS  Google Scholar 

  13. Y. Yuan, L. Zhang, J. Xing, M.B. Utama, X. Lu, K. Du, Y. Li, X. Hu, S. Wang, A. Genç, R. Dunin-Borkowski, J. Arbioldf, Q. Xiong, High-yield synthesis and optical properties of g-C3N4. Nanoscale 7(29), 12343–12350 (2015)

    Article  CAS  Google Scholar 

  14. F. Guo, X. Huang, Z. Chen, H. Sun, L. Chen, Prominent co-catalytic effect of CoP nanoparticles anchored on high-crystalline g-C3N4 nanosheets for enhanced visible-light photocatalytic degradation of tetracycline in wastewater. Chem. Eng. J. 395, 125118 (2020)

    Article  CAS  Google Scholar 

  15. Y. Zhen, C. Yang, H. Shen, W. Xue, C. Gu, J. Feng, Y. Zhang, F. Fu, Y. Liang, Photocatalytic performance and mechanism insights of a S-scheme g-C3N4/Bi2MoO6 heterostructure in phenol degradation and hydrogen evolution reactions under visible light. Phys. Chem. Chem. Phys. 22(45), 26278–26288 (2020)

    Article  CAS  Google Scholar 

  16. S. Kang, M. He, M. Chen, Z. Wang, Z. Sun, H. Dang, X. Chang, M. Dong, P. Liu, L. Cui, Polymeric structure optimization of g-C3N4 by using confined argon-assisted highly-ionized ammonia plasma for improved photocatalytic activity. J. Colloid Interface Sci. 556, 214–223 (2019)

    Article  CAS  Google Scholar 

  17. R. Senthil, S. Osman, J. Pan, X. Liu, Y. Wu, Recent progress on porous carbon derived from Zn and Al based metal-organic frameworks as advanced materials for supercapacitor applications. J. Energy Storage. 44, 103263 (2021)

    Article  Google Scholar 

  18. M. Xu, X. Zhao, H. Jiang, S. Chen, P. Huo, MOFs-derived C-In2O3/g-C3N4 heterojunction for enhanced photoreduction CO2. J. Environ. Chem. Eng. 9(6), 106469 (2021)

    Article  CAS  Google Scholar 

  19. S. Liu, D. Chi, Q. Zou, Y. Ma, R. Chen, K. Zhang, MOFs-Derived MoS2/C3N4 composites with highly efficient charge separation for photocatalytic H2 evolution. Inorganica Chim. Acta 533, 120787 (2022)

    Article  CAS  Google Scholar 

  20. Y. Feng, T. Yan, T. Wu, N. Zhang, Q. Yang, M. Sun, L. Yan, B. Du, Q. Wei, A label-free photoelectrochemical aptasensing platform base on plasmon Au coupling with MOF-derived In2O3@g-C3N4 nanoarchitectures for tetracycline detection. Sens. Actuators B Chem. 298, 126817 (2019)

    Article  CAS  Google Scholar 

  21. W. Zou, B. Deng, X. Hu, Y. Zhou, Y. Pu, S. Yu, K. Ma, J. Sun, H. Wan, L. Dong, Crystal-plane-dependent metal oxide-support interaction in CeO2/g-C3N4 for photocatalytic hydrogen evolution. Appl. Catal. B. 238, 111–118 (2018)

    Article  CAS  Google Scholar 

  22. R. Tang, D. Gong, Y. Deng, S. Xiong, J. Zheng, L. Li, Z. Zhou, L. Su, J. Zhao, π-π stacking derived from graphene-like biochar/g-C3N4 with tunable band structure for photocatalytic antibiotics degradation via peroxymonosulfate activation. J. Hazard. Mater. 423, 126944 (2022)

    Article  CAS  Google Scholar 

  23. H. Huang, K. Hu, C. Xue, Z. Wang, Z. Fang, L. Zhou, M. Sun, Z. Xua, J. Kou, L. Wang, C. Lu, Metal-free π-conjugated hybrid g-C3N4 with tunable band structure for enhanced visible-light photocatalytic H2 production. J. Mater Sci Technol. 87, 207–215 (2021)

    Article  CAS  Google Scholar 

  24. Y. Duan, L. Deng, Z. Shi, X. Liu, H. Zeng, H. Zhang, J. Crittenden, Efficient sulfadiazine degradation via in-situ epitaxial grow of Graphitic Carbon Nitride (g-C3N4) on carbon dots heterostructures under visible light irradiation: Synthesis, mechanisms and toxicity evaluation. J. Colloid Interface Sci. 561, 696–707 (2022)

    Article  Google Scholar 

  25. D. Gogoi, A. Shah, M. Qureshi, A. Golder, N. Peela, Silver grafted graphitic-carbon nitride ternary hetero-junction Ag/gC3N4 (Urea)-gC3N4 (Thiourea) with efficient charge transfer for enhanced visible-light photocatalytic green H2 production. Appl. Surf. Sci. 558, 149900 (2021)

    Article  CAS  Google Scholar 

  26. X. Liu, H. Ji, S. Li, W. Liu, Graphene modified anatase/titanate nanosheets with enhanced photocatalytic activity for efficient degradation of sulfamethazine under simulated solar light. Chemosphere 233, 198–206 (2019)

    Article  CAS  Google Scholar 

  27. X. Yu, J. Xie, Q. Liu, H. Dong, Y. Li, The origin of enhanced photocatalytic activity in g-C3N4/TiO2 heterostructure revealed by DFT calculations. J. Colloid Interface Sci. 593, 133–141 (2021)

    Article  CAS  Google Scholar 

  28. T. Zhang, Q. Yin, M. Zhang, S. Zhang, Y. Shao, L. Fang, Q. Yan, X. Sun, Enhanced photocatalytic activity of AgBr photocatalyst via constructing heterogeneous junctions with reduced graphene. J. Mater. Sci. 32(11), 15331–15342 (2021)

    CAS  Google Scholar 

  29. X. Bi, S. Yu, E. Liu, L. Liu, K. Zhang, J. Zang, Y. Zhao, Construction of g-C3N4/TiO2 nanotube arrays Z-scheme heterojunction to improve visible light catalytic activity. Colloids Surf. A Physicochem. Eng. Asp. 603, 125193 (2020)

    Article  CAS  Google Scholar 

  30. J. Guo, H. Sun, X. Yuan, L. Jiang, Z. Wu, H. Yu, N. Tang, M. Yu, M. Yan, J. Liang, Photocatalytic degradation of persistent organic pollutants by Co-Cl bond reinforced CoAl-LDH/Bi12O17Cl2 photocatalyst: mechanism and application prospect evaluation. Water Res. 219, 118558 (2022)

    Article  CAS  Google Scholar 

  31. R. Wang, Y. Hu, J. Du, L. Xu, Y. Fu, Boosting the visible-light activity of ZrO2/g-C3N4 by controlling the crystal structure of ZrO2. J. Mater. Res. 36(15), 3086–3095 (2021)

    Article  CAS  Google Scholar 

  32. T.D. Munusamy, C.S. Yee, M.R. Khan, Construction of hybrid g-C3N4/CdO nanocomposite with improved photodegradation activity of RhB dye under visible light irradiation. Adv. Powder Technol. 31(7), 2921–2931 (2020)

    Article  CAS  Google Scholar 

  33. L. Zhu, J. Luo, G. Dong, Y. Lu, Y. Lai, J. Liu, G. Chen, Y. Zhang, Enhanced photocatalytic degradation of organic contaminants over a CuO/g-C3N4 p–n heterojunction under visible light irradiation. RSC Adv. 11, 33373–33379 (2021)

    Article  CAS  Google Scholar 

  34. Z. Wu, Y. Liang, X. Yuan, D. Zou, J. Fang, L. Jiang, J. Zhang, H. Yang, Z. Xiao, MXene Ti3C2 derived Z–scheme photocatalyst of graphene layers anchored TiO2/g–C3N4 for visible light photocatalytic degradation of refractory organic pollutants. Chem. Eng. J. 394, 124921 (2020)

    Article  CAS  Google Scholar 

  35. H. Shao, P. Yao, Y. Chen, Y. Yao, G. Li, X. Liao, Ball-milling method encapsulated α-Fe2O3 into g-C3N4 as efficient and stable photo-catalysts. New J. Chem. 45, 16092–16100 (2021)

    Article  CAS  Google Scholar 

  36. P. Xia, B. Zhu, B. Cheng, J. Yu, J. Xu, 2D/2D g-C3N4/MnO2 nanocomposite as a direct Z-scheme photocatalyst for enhanced photocatalytic activity. ACS Sustain. Chem. Eng. 6(1), 965–973 (2018)

    Article  CAS  Google Scholar 

  37. Y. Zhu, Y. Cui, B. Xiao, J. Yang, H. Li, Z. Chen, Z-scheme 2D/2D g-C3N4/Sn3O4 heterojunction for enhanced visible-light photocatalytic H2 evolution and degradation of ciprofloxacin. Mater. Sci. Semicond. Process. 129, 105767 (2021)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (No. 22072038), the Natural Science Foundation of Hubei Province Education Committee, China (D20213102) and Graduate Student Innovation Research Foundation of Hubei Normal University (2022057).

Funding

National Natural Science Foundation of China (No. 22072038); the Natural Science Foundation of Hubei Province Education Committee, China (D20213102); Graduate Student Innovation Research Foundation of Hubei Normal University (2022057).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by YY, YZ, HH, XL and SY. The first draft of the manuscript was co-authored by  YY and YZ and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Shuijin Yang.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Research data policy and data availability statements

The materials used and analyzed during the current study are available from the corresponding author on reasonable request.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Y., Zhao, Y., Hu, H. et al. Synthesis and characterization of g-C3N4@ZrO2 composites through calcination method for enhanced photocatalytic activities. J Mater Sci: Mater Electron 34, 946 (2023). https://doi.org/10.1007/s10854-023-10422-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10422-w

Navigation