Skip to main content
Log in

Effect of Au and Ag contacts on the CO sensitivity of SnO2 thick films

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Synthesized tin oxide (SnO2) nanoparticles were deposited on soda lime glass substrates, in thick films form, by means of Doctor-Blade technique. Further annealing treatment were done on all films at 250, 350, and 450 °C. The deposited films were characterized using X-ray diffraction, Profilometry, scanning electron microscopy (SEM), and energy dispersive spectroscopy (EDS). As the annealing temperature increased, the corresponding thickness of the films varied from 1319 to 538.5 nm due to the evaporation of carbon during the annealing process. SEM analysis has confirmed the formation of agglomerates consisting of SnO2 particles with average size in the range of ~ 25–60 nm, which are highly porous. At higher annealing temperatures, an increment in surface porosity resulted in pin holes-like structures. EDS analysis has confirmed the evaporation of carbon with increase in annealing temperature and homogenous distribution of Sn and O over the film surface. The films were tested as gas sensors, by detecting the resistivity change as a function of CO concentration. Two metal contacts were tested also, namely, silver and gold, deposited on tin oxide annealed at 450 °C. An enhanced sensing response around 100 was achieved for films with gold contacts as compared with a value of 30 found in the samples with silver contacts. The high sensing response of SnO2 films with gold contacts is due to the high contact area with SnO2, gold inertness, and chemical stability. Our findings let us suggest that SnO2 sensors with gold contacts operating at 100 °C will be lower power consumption sensing devices with high durability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. O. Pummakarnchana, N. Tripathi, J. Dutta, Sci. Technol. Adv. Mater. 6, 251 (2005)

    Article  CAS  Google Scholar 

  2. G. Lu, L.E. Ocola, J. Chen, Nanotechnology 20, 445502 (2009)

    Article  Google Scholar 

  3. B. Sikora, K. Fronc, I. Kaminska, A. Baranowska-Korczyc, K. Sobczak, P. Dłużewski, D. Elbaum, J. Sol-Gel Sci. Technol. 61, 197 (2012)

    Article  CAS  Google Scholar 

  4. E. Comini, G. Faglia, G. Sberveglieri, Solid state gas sensing, 1st edn. (Springer, Boston, 2009)

    Book  Google Scholar 

  5. S. Capone, A. Forleo, L. Francioso, R. Rella, P. Siciliano, J. Spadavecchia, D.S. Presicce, A.M. Taurino, J. Optoelectron. Adv. Mater. 5, 1335 (2003)

    CAS  Google Scholar 

  6. Q. Zhong, Y. Huang, H. Shen, Y. Chen, H. Chen, T. Huang, E.Y. Zeng, S. Tao, Environ. Sci. Pollut. Res. 24, 864 (2017)

    Article  CAS  Google Scholar 

  7. K. Wetchakun, T. Samerjai, N. Tamaekong, C. Liewhiran, C. Siriwong, V. Kruefu, A. Wisitsoraat, A. Tuantranont, S. Phanichphant, Sens. Actuators B 160, 580 (2011)

    Article  CAS  Google Scholar 

  8. T.V.K. Karthik, M. Olvera, A. Maldonado, V. Velumurugan, Mater. Sci. Semicond. Process. 37, 143 (2015)

    Article  CAS  Google Scholar 

  9. E.R. Leite, A.P. Maciel, I.T. Weber, P.N. Lisboa-Filho, E. Longo, C.O. Paiva-Santos, A.V.C. Andrade, C.A. Pakoscimas, Y. Maniette, W.H. Schreiner, Adv. Mater. 14, 905 (2002)

    Article  CAS  Google Scholar 

  10. D.G. Rickerby, A.N. Skouloudis, Int. J. Nanotechnol. 11, 583 (2014)

    Article  CAS  Google Scholar 

  11. V. Demarne, R. Sanjinés, Gas sensors, 1st edn. (Springer Netherlands, Dordrecht, 1992), pp. 89–116

    Book  Google Scholar 

  12. K. Wetchakun, T. Samerjai, N. Tamaekong, C. Liewhiran, C. Siriwong, V. Kruefu, A. Wisitsoraat, A. Tuantranont, S. Phanichphant, Sens. Actuators B 160, 580 (2011)

    Article  CAS  Google Scholar 

  13. T. Zhang, S. Mubeen, N.V. Myung, M.A. Deshusses, Nanotechnology 19, 332001 (2008)

    Article  Google Scholar 

  14. S. Matsushima, T. Maekawa, J. Tamaki, N. Miura, N. Yamazoe, Sens. Actuators B 9, 71 (1992)

    Article  CAS  Google Scholar 

  15. N. Yamazoe, J. Fuchigami, M. Kishikawa, T. Seiyama, Surf. Sci. 86, 335 (1979)

    Article  CAS  Google Scholar 

  16. S. Chakraborty, A. Sen, H.S. Maiti, Sens. Actuators B 115, 610 (2006)

    Article  CAS  Google Scholar 

  17. K.C. Song, Y. Kang, Mater. Lett. 42, 283 (2000)

    Article  CAS  Google Scholar 

  18. I.D.P. Hermida, G. Wiranto, Hiskia, R. Nopriyanti, J. Phys. Conf. Ser. 776, 012061 (2016). https://doi.org/10.1088/1742-6596/776/1/012061

    Article  CAS  Google Scholar 

  19. K.W. Choi, J.S. Lee, M.H. Seo, M.S. Jo, J.Y. Yoo, G.S. Sim, J.B. Yoon, Sens. Actuators B 289, 153 (2019)

    Article  CAS  Google Scholar 

  20. S. Capone, P. Siciliano, F. Quaranta, R. Rella, M. Epifani, L. Vasanelli, Sens. Actuators B 77, 503 (2001)

    Article  CAS  Google Scholar 

  21. F. Favier, E.C. Walter, M.P. Zach, T. Benter, M.P. Reginald, Science 80, 293, 2227 (2001)

    Article  Google Scholar 

  22. D. Xie, D. Chen, S. Peng, Y. Yang, L. Xu, F. Wu, IEEE Electron Device Lett. 40, 1178 (2019)

    Article  CAS  Google Scholar 

  23. Y. Xia, J. Wang, J.-L. Xu, X. Li, D. Xie, L. Xiang, S. Komarneni, ACS Appl. Mater. Interfaces 8, 35454 (2016)

    Article  CAS  Google Scholar 

  24. T.M. Ngoc, N. Van Duy, N. Duc Hoa, C. Manh Hung, H. Nguyen, N. Van Hieu, Sens. Actuators B 295, 144 (2019)

    Article  CAS  Google Scholar 

  25. J.H. Kim, A. Mirzaei, H.W. Kim, S.S. Kim, Sens. Actuators B 296, 126659 (2019)

    Article  CAS  Google Scholar 

  26. D. Zhao, H. Huang, S. Chen, Z. Li, S. Li, M. Wang, H. Zhu, X. Chen, Nano Lett. 19, 3448 (2019)

    Article  CAS  Google Scholar 

  27. M.A. Han, H.J. Kim, H.C. Lee, J.S. Park, H.N. Lee, Appl. Surf. Sci. 481, 133 (2019)

    Article  CAS  Google Scholar 

  28. A. Singh, A. Sharma, M. Tomar, V. Gupta, Nanotechnology 29, 065502 (2018)

    Article  Google Scholar 

  29. M. Hjiri, L. El Mir, S.G. Leonardi, A. Pistone, L. Mavilia, G. Neri, Sens. Actuators B 196, 413 (2014)

    Article  CAS  Google Scholar 

  30. T.V.K. Karthik, M.D. Olvera, A. Maldonado, H. Gómezpozos, Sensors 16, 1283 (2016)

    Article  Google Scholar 

  31. T.V.K. Karthik, H. Gómez-Pozos, V. Rodríguez-Lugo, M.D. Olvera, Sensors 17, 1011 (2017)

    Article  Google Scholar 

  32. H.L. Chen, Y.M. Lu, W.S. Hwang, Mater. Trans. 46, 872 (2005)

    Article  CAS  Google Scholar 

  33. M.J. Madou, S.R. Morrison, Chemical sensing with solid state devices, 1st edn. (Elsevier, Saint Louis, 1989)

    Google Scholar 

  34. W. Göpel, K.D. Schierbaum, Sens. Actuators B 26, 1 (1995)

    Article  Google Scholar 

  35. S.H. Hahn, N. Bârsan, U. Weimar, S.G. Ejakov, J.H. Visser, R.E. Soltis, Thin Solid Films 436, 17 (2003)

    Article  CAS  Google Scholar 

  36. J.Y. Choi, T.S. Oh, Thin Solid Films 547, 230 (2013)

    Article  CAS  Google Scholar 

  37. J. Sel, M. Higashitani, M. Dunga, F. Toyama, P. Rabkin, (US10319680) Metal contact via structure surrounded by an air gap and method of making thereof. US Patent, 11 June 2019

  38. T. Nandy, R.A. Coutu, C. Ababei, Sensors 18, 3443 (2018)

    Article  Google Scholar 

  39. J. Holz, F.K. Schulte, Work function in metals, 1st edn. (Springer, Nwe York, 1979)

    Google Scholar 

Download references

Acknowledgements

Authors are grateful to School of Electrical and Computer Engineering, RMIT University, Australia for providing the transducer with gold contacts. The technical assistance of M. A. Luna-Arias, A. Tavira-Fuentes, and Josue-Esau Romero Ibarra for sample preparation and characterization. This work was supported by PRODEP with Project No. 511-6/19-8268.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. V. K. Karthik.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karthik, T.V.K., Hernandez, A.G., de la Olvera, M.L. et al. Effect of Au and Ag contacts on the CO sensitivity of SnO2 thick films. J Mater Sci: Mater Electron 31, 7481–7489 (2020). https://doi.org/10.1007/s10854-020-02988-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-02988-6

Navigation