Skip to main content
Log in

Wearable anti-temperature interference pressure sensor with ridge-like interlocking microstructures

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

As wearable pressure sensors have to interact with the external environment in practical application, the problem that ambient temperature changes in such environment usually interferes with sensor’s pressure measurement performance illustrates the importance of having wearable pressure sensors produce electrical signal independent of temperature. This study proposes a new design of a wearable anti-temperature interference pressure sensor with a near-zero temperature coefficient of resistance (TCR). The sensor is fabricated by a simple method of coating the reduced graphene oxide/Ag nanowires (rGO/Ag NWs) composite on the surface of the polydimethylsiloxane (PDMS) polymer film with ridge-like microstructures. The wearable anti-temperature interference pressure sensor yields a high sensitivity of − 1.58 kPa−1 in the pressure range of 0–400 Pa, a quick response time (25 ms), and a high durability (after 1000 loops). It can be applied to monitor a variety of human movements, including large movements such as finger and wrist bending, and fine movements such as swallowing and breathing, and is virtually insusceptible to temperature changes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. K. Tian, G. Sui, P. Yang, H. Deng, Q. Fu, ACS Appl. Mater. Interfaces 12, 20998–21008 (2020). https://doi.org/10.1021/acsami.0c05618

    Article  CAS  Google Scholar 

  2. W. Zhang, Y. Xiao, Y. Duan, N. Li, L. Wu, Y. Lou, H. Wang, Z. Peng, ACS Appl. Mater. Interfaces 12, 48938–48947 (2020). https://doi.org/10.1021/acsami.0c12369

    Article  CAS  Google Scholar 

  3. H. Ervasti, T. Jarvinen, O. Pitkanen, E. Bozo, J. Hiitola-Keinanen, O.H. Huttunen, J. Hiltunen, K. Kordas, ACS Appl. Mater. Interfaces 13, 27284–27294 (2021). https://doi.org/10.1021/acsami.1c04397

    Article  CAS  Google Scholar 

  4. M. Chen, K. Li, G. Cheng, K. He, W. Li, D. Zhang, W. Li, Y. Feng, L. Wei, W. Li, G. Zhong, C. Yang, ACS Appl. Mater. Interfaces 11, 2551–2558 (2019). https://doi.org/10.1021/acsami.8b20284

    Article  CAS  Google Scholar 

  5. L. Sheng, Y. Liang, L. Jiang, Q. Wang, T. Wei, L. Qu, Z. Fan, Adv. Funct. Mater. 25, 6545–6551 (2015). https://doi.org/10.1002/adfm.201502960

    Article  CAS  Google Scholar 

  6. J. Park, Y. Lee, M. Ha, S. Cho, H. Ko, J. Mater. Chem. B 4, 2999–3018 (2016). https://doi.org/10.1039/c5tb02483h

    Article  CAS  Google Scholar 

  7. S. Pyo, J. Lee, K. Bae, S. Sim, J. Kim, Adv. Mater. 33, 2005902 (2021). https://doi.org/10.1002/adma.202005902

    Article  CAS  Google Scholar 

  8. X. Pu, M. Liu, X. Chen, J. Sun, C. Du, Y. Zhang, J. Zhai, W. Hu, Z.L. Wang, Sci. Adv. (2017). https://doi.org/10.1126/sciadv.1700015

    Article  Google Scholar 

  9. T.H. Chang, Y. Tian, C. Li, X. Gu, K. Li, H. Yang, P. Sanghani, C.M. Lim, H. Ren, P.Y. Chen, ACS Appl. Mater. Interfaces 11, 10226–10236 (2019). https://doi.org/10.1021/acsami.9b00166

    Article  CAS  Google Scholar 

  10. X. Wu, Z. Li, H. Wang, J. Huang, J. Wang, S. Yang, J. Mater. Chem. C 7, 9008–9017 (2019). https://doi.org/10.1039/c9tc02575h

    Article  CAS  Google Scholar 

  11. B. Zhu, Z. Niu, H. Wang, W.R. Leow, H. Wang, Y. Li, L. Zheng, J. Wei, F. Huo, X. Chen, Small 10, 3625–3631 (2014). https://doi.org/10.1002/smll.201401207

    Article  CAS  Google Scholar 

  12. L. Cheng, R. Wang, X. Hao, G. Liu, Sensors 21, 289 (2021). https://doi.org/10.3390/s21010289

    Article  CAS  Google Scholar 

  13. J. Zhang, L.J. Zhou, H.M. Zhang, Z.X. Zhao, S.L. Dong, S. Wei, J. Zhao, Z.L. Wang, B. Guo, P.A. Hu, Nanoscale 10, 7387–7395 (2018). https://doi.org/10.1039/c7nr09149d

    Article  CAS  Google Scholar 

  14. H. Jing, L. Xu, X. Wang, Y. Liu, J. Hao, J. Mater. Chem. A 9, 19914–19921 (2021). https://doi.org/10.1039/d1ta02791c

    Article  CAS  Google Scholar 

  15. G.Y. Bae, S.W. Pak, D. Kim, G. Lee, D.H. Kim, Y. Chung, K. Cho, Adv. Mater. 28, 5300–5306 (2016). https://doi.org/10.1002/adma.201600408

    Article  CAS  Google Scholar 

  16. Y. Zhang, F. Han, Y. Hu, Y. Xiong, H. Gu, G. Zhang, P. Zhu, R. Sun, C.P. Wong, Macromol. Chem. Phys. 221, 2000073 (2020). https://doi.org/10.1002/macp.202000073

    Article  CAS  Google Scholar 

  17. Y. Wang, J. Chen, D. Mei, Micromachines 10, 579 (2019). https://doi.org/10.3390/mi10090579

    Article  Google Scholar 

  18. J. Park, Y. Lee, J. Hong, M. Ha, Y.D. Jung, H. Lim, S.Y. Kim, H. Ko, ACS Nano 8, 4689–4697 (2014). https://doi.org/10.1021/nn500441k

    Article  CAS  Google Scholar 

  19. G. Lv, X. Hu, L. Hao, H. Tian, J. Shao, D. Yu, Ind. Eng. Chem. Res. 60, 314–323 (2021). https://doi.org/10.1021/acs.iecr.0c04908

    Article  CAS  Google Scholar 

  20. L. Cheng, W. Qian, L. Wei, H. Zhang, T. Zhao, M. Li, A. Liu, H. Wu, J. Mater. Chem. C 8, 11525–11531 (2020). https://doi.org/10.1039/d0tc02539a

    Article  CAS  Google Scholar 

  21. S. Zhang, C. Lin, Z. Xia, M. Chen, Y. Jia, B. Tao, S. Li, K. Cai, J. Mater. Chem. B 8, 8315–8322 (2020). https://doi.org/10.1039/d0tb00954g

    Article  CAS  Google Scholar 

  22. W. Li, X. Jin, X. Han, Y. Li, W. Wang, T. Lin, Z. Zhu, ACS Appl. Mater. Interfaces 13, 19211–19220 (2021). https://doi.org/10.1021/acsami.0c22938

    Article  CAS  Google Scholar 

  23. Q. Wang, S. Ling, X. Liang, H. Wang, H. Lu, Y. Zhang, Adv. Funct. Mater. 29, 1808695 (2019). https://doi.org/10.1002/adfm.201808695

    Article  CAS  Google Scholar 

  24. Z. Gao, Z. Lou, W. Han, G. Shen, ACS Appl. Mater. Interfaces 12, 24339–24347 (2020). https://doi.org/10.1021/acsami.0c05119

    Article  CAS  Google Scholar 

  25. A. Abodurexiti, C. Yang, X. Maimaitiyiming, Macromol. Mater. Eng. 305, 2000181 (2020). https://doi.org/10.1002/mame.202000181

    Article  CAS  Google Scholar 

  26. Y. Zhang, Y. Zhao, W. Zhai, G. Zheng, Y. Ji, K. Dai, L. Mi, D. Zhang, C. Liu, C. Shen, Chem. Eng. J. 407, 127960 (2021). https://doi.org/10.1016/j.cej.2020.127960

    Article  CAS  Google Scholar 

  27. L. Zhu, Y. Wang, D. Mei, W. Ding, C. Jiang, Y. Lu, ACS Appl. Mater. Interfaces 12, 31725–31737 (2020). https://doi.org/10.1021/acsami.0c09653

    Article  CAS  Google Scholar 

  28. G.Y. Bae, J.T. Han, G. Lee, S. Lee, S.W. Kim, S. Park, J. Kwon, S. Jung, K. Cho, Adv. Mater. 30, 1803388 (2018). https://doi.org/10.1002/adma.201803388

    Article  CAS  Google Scholar 

  29. K. Chu, S.C. Lee, S. Lee, D. Kim, C. Moon, S.H. Park, Nanoscale 7, 471–478 (2015). https://doi.org/10.1039/c4nr04489d

    Article  CAS  Google Scholar 

  30. S. Nuthalapati, V. Shirhatti, V. Kedambaimoole, V. Pandi, H. Takao, M.M. Nayak, K. Rajanna, Sens. Actuators A Phys. 334, 113314 (2022). https://doi.org/10.1016/j.sna.2021.113314

    Article  CAS  Google Scholar 

  31. R. Kapusta, H. Zhu, C. Lyden, IEEE J. Solid-State Circuits 49, 1694–1701 (2014). https://doi.org/10.1109/jssc.2014.2320465

    Article  Google Scholar 

  32. C.M. Seck, P.J. Martin, E.C. Cook, B.C. Odom, D.A. Steck, Rev. Sci. Instrum. 87, 064703 (2016). https://doi.org/10.1063/1.4953330

    Article  CAS  Google Scholar 

  33. Y.K. Choi, T. Park, D.H.D. Lee, J. Ahn, Y.H. Kim, S. Jeon, M.J. Han, S.J. Oh, Nanoscale 14, 8628–8639 (2022). https://doi.org/10.1039/d2nr02392j

    Article  CAS  Google Scholar 

  34. H. Yao, P. Li, W. Cheng, W. Yang, Z. Yang, H.P.A. Ali, H. Guo, B.C.K. Tee, ACS Mater. Lett. 2, 986–992 (2020). https://doi.org/10.1021/acsmaterialslett.0c00160

    Article  CAS  Google Scholar 

  35. W. He, G. Li, S. Zhang, Y. Wei, J. Wang, Q. Li, X. Zhang, ACS Nano 9, 4244–4251 (2015). https://doi.org/10.1021/acsnano.5b00626

    Article  CAS  Google Scholar 

  36. Z. Gao, K. Jiang, Z. Lou, W. Han, G. Shen, J. Mater. Chem. C 7, 9648–9654 (2019). https://doi.org/10.1039/c9tc02832c

    Article  CAS  Google Scholar 

  37. T. Someya, M. Amagai, Nat. Biotechnol. 37, 382–388 (2019). https://doi.org/10.1038/s41587-019-0079-1

    Article  CAS  Google Scholar 

  38. A. Chortos, J. Liu, Z. Bao, Nat. Mater. 15, 937–950 (2016). https://doi.org/10.1038/nmat4671

    Article  CAS  Google Scholar 

  39. R.S. Johansson, J.R. Flanagan, Nat. Rev. Neurosci. 10, 345–359 (2009). https://doi.org/10.1038/nrn2621

    Article  CAS  Google Scholar 

  40. Y. Cheng, Y. Ma, L. Li, M. Zhu, Y. Yue, W. Liu, L. Wang, S. Jia, C. Li, T. Qi, J. Wang, Y. Gao, ACS Nano 14, 2145–2155 (2020). https://doi.org/10.1021/acsnano.9b08952

    Article  CAS  Google Scholar 

  41. X. Tang, C. Wu, L. Gan, T. Zhang, T. Zhou, J. Huang, H. Wang, C. Xie, D. Zeng, Small 15, 1804559 (2019). https://doi.org/10.1002/smll.201804559

    Article  CAS  Google Scholar 

  42. Y. Gao, G. Yu, J. Tan, F. Xuan, Sens. Actuators A Phys. 280, 205–209 (2018). https://doi.org/10.1016/j.sna.2018.07.048

    Article  CAS  Google Scholar 

  43. B. Chen, L. Zhang, H. Li, X. Lai, X. Zeng, J. Colloid Interface Sci. 617, 478–488 (2022). https://doi.org/10.1016/j.jcis.2022.03.013

    Article  CAS  Google Scholar 

  44. Q.J. Sun, X.H. Zhao, Y. Zhou, C.C. Yeung, W. Wu, S. Venkatesh, Z.X. Xu, J.J. Wylie, W.J. Li, V.A.L. Roy, Adv. Funct. Mater. 29, 1808829 (2019). https://doi.org/10.1002/adfm.201808829

    Article  CAS  Google Scholar 

  45. A.K. Geim, K.S. Novoselov, Nat. Mater. 6, 183–191 (2007). https://doi.org/10.1038/nmat1849

    Article  CAS  Google Scholar 

  46. S.J. Kim, K. Choi, B. Lee, Y. Kim, B.H. Hong, Annu. Rev. Mater. Res. 45, 63–84 (2015). https://doi.org/10.1146/annurev-matsci-070214-020901

    Article  CAS  Google Scholar 

  47. L.J. Cote, J. Kim, V.C. Tung, J. Luo, F. Kim, J. Huang, Pure Appl. Chem. 83, 95–110 (2011). https://doi.org/10.1351/pac-con-10-10-25

    Article  CAS  Google Scholar 

  48. S. Han, Q. Meng, A. Chand, S. Wang, X. Li, H. Kang, T. Liu, Polym. Test. 80, 106106 (2019). https://doi.org/10.1016/j.polymertesting.2019.106106

    Article  CAS  Google Scholar 

  49. S.M. Shivaprasad, M.A. Angadi, L.A. Udachan, Thin Solid Films 71, L1–L4 (1980). https://doi.org/10.1016/0040-6090(80)90170-4

    Article  CAS  Google Scholar 

  50. T. Park, H.K. Woo, B.K. Jung, B. Park, J. Bang, W. Kim, S. Jeon, J. Ahn, Y. Lee, Y.M. Lee, T.I. Kim, S.J. Oh, ACS Nano 15, 8120–8129 (2021). https://doi.org/10.1021/acsnano.0c09835

    Article  CAS  Google Scholar 

  51. N. Bai, L. Wang, Q. Wang, J. Deng, Y. Wang, P. Lu, J. Huang, G. Li, Y. Zhang, J. Yang, K. Xie, X. Zhao, C.F. Guo, Nat. Commun. 11, 1–9 (2020). https://doi.org/10.1038/s41467-019-14054-9

    Article  CAS  Google Scholar 

Download references

Funding

This work was financially supported by Tianjin Applied Basic Research Multi-input Fund (21JCYBJC01560), Special project for intelligent robots (2022YFB4703505) and National Natural Science Foundation of China (52273145).

Author information

Authors and Affiliations

Authors

Contributions

All the authors have significantly contributed in this research work. YD performed material preparation, device fabrication, morphology characterization, data collection and analysis, and wrote the first draft of the manuscript. JC performed material preparation and provided assistance in the experiment. JZ and XY provided the test conditions. XY and XH reviewed and revised the manuscript and supervised the entire research work.

Corresponding authors

Correspondence to Xin Hou or Xubo Yuan.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 61,497 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, Y., Chang, J., Zhao, J. et al. Wearable anti-temperature interference pressure sensor with ridge-like interlocking microstructures. J Mater Sci: Mater Electron 34, 835 (2023). https://doi.org/10.1007/s10854-023-10223-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10223-1

Navigation