Skip to main content
Log in

Band structure of a magneto-electro-elastic phononic crystal nanobeam with surface effect and size effect

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

This paper proposes a magneto-electro-elastic (MEE) phononic crystal (PC) nanobeam with surface effect and size surface in order to investigate the bandgap properties and flexural wave propagation behaviors. The MEE-PC nanobeam designed in this paper is made of some finite periodic arrays of MEE material and epoxy segments. As a case study, the characteristics of flexural wave bandgap structures are size-dependent, and remarkably affected by surface effect when the dimension of PC beam reduces to the nanoscale. The influence of different parameters such as surface effect, size surface pre-stress, electric potential and magnetic potential loadings on the bandgap and wave propagation properties of MEE-PC nanobeam is investigated in detail. The theoretical result reveals that the edge frequencies and widths of the first four order bandgaps with surface effect, especially for high-frequency regions, are much higher than those without surface effect. Moreover, increase the external electrical field and magnetic field appropriately, the influence of surface effect and size effect on the bandgap properties are increased. These theoretical results would be helpful for the intelligent regulation of MEE-PC nanobeam and the design of nanoscale devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data availability

The authors declare that the data supporting the findings of this study are available within the article. No new data were created during the study.

References

  1. D.H. Qian, J. Mater. Sci. 54, 4766 (2019)

    Article  CAS  Google Scholar 

  2. Y.Y. Chen et al., J. Mech. Phys. Solids 105, 179 (2017)

    Article  Google Scholar 

  3. C. Sugino et al., J. Appl. Phys. 120, 134501 (2016)

    Article  Google Scholar 

  4. F.M. Li, C.Z. Zhang, J. Appl. Phys. 124, 085106 (2018)

    Article  Google Scholar 

  5. J.X. Zhou et al., Phys. Lett. A 381, 3141 (2017)

    Article  CAS  Google Scholar 

  6. E.J.P. Miranda et al., Wave Motion 91, 102391 (2019)

    Article  Google Scholar 

  7. Y.Y. Chen et al., Smart Mater. Struct. 25, 105036 (2016)

    Article  Google Scholar 

  8. J.X. Zhou et al., J. Appl. Phys. 121, 044902 (2017)

    Article  Google Scholar 

  9. Y. Xiao et al., New. J. Phys. 14, 033042 (2012)

    Article  Google Scholar 

  10. D.H. Qian, Z.Y. Shi, Phys. Lett. A 380, 3319 (2016)

    Article  CAS  Google Scholar 

  11. G. Wang et al., Phys. Rev. B 69, 184302 (2004)

    Article  Google Scholar 

  12. S.B. Chen et al., J. Sound Vib. 332, 1520 (2013)

    Article  Google Scholar 

  13. Z. Yan et al., Acta Mech. Solida Sin 30, 390 (2017)

    Article  Google Scholar 

  14. S.Z. Zhang, Y.W. Gao, J. Phys. D Appl. Phys. 50, 445303 (2017)

    Article  Google Scholar 

  15. M.A. Mahdi et al., Int. J. Hydrogen Energ. 47, 31 (2022)

    Article  Google Scholar 

  16. S.R. Yousefi et al., J. Mol. Liq 337, 116405 (2021)

    Article  CAS  Google Scholar 

  17. S.R. Yousefi et al., J. Mater. Sci. : Mater. Electron. 27, 1244 (2016)

    CAS  Google Scholar 

  18. S.R. Yousefi et al., RSC Adv. 11, 11500 (2021)

    Article  CAS  Google Scholar 

  19. S.R. Yousefi et al., Ultrason. Sonochem. 58, 104619 (2019)

    Article  CAS  Google Scholar 

  20. S.R. Yousefi et al., Int. J. Hydrogen Energ. 44, 43 (2019)

    Article  Google Scholar 

  21. S.R. Yousefi et al., Adv. Powder Technol. 28(4), 1258–1262 (2017)

    Article  CAS  Google Scholar 

  22. S.R. Yousefi et al., J. Nanostruct. 6, 1 (2016)

    Article  Google Scholar 

  23. A. Eringen, and C Int. J. Eng. Sci. 10, 1 (1972)

    Article  Google Scholar 

  24. A.C. Eringen, J. Appl. Phys. 54, 4703 (1983)

    Article  Google Scholar 

  25. M.E. Gurtin, A.I. Murdoch, Arch. Ration. Mech. An. 57, 291 (1975)

    Article  Google Scholar 

  26. H.R. Asemi et al., Phys. E 68, 112 (2015)

    Article  CAS  Google Scholar 

  27. R. Ansari et al., Compos. Part. B-Eng 89, 316 (2016)

    Article  Google Scholar 

  28. C. Juntarasaid et al., Phys. E 46, 68 (2012)

    Article  Google Scholar 

  29. R. Ansari, A and Norouzzadeh, Phys. E 84, 84 (2016)

    Article  CAS  Google Scholar 

  30. L. Li, Y. Guo, Crystals 6, 45 (2016)

    Article  Google Scholar 

  31. E.J.P. Miranda et al., Mech. Syst. Signal. Pr 112, 280 (2018)

    Article  Google Scholar 

  32. D.H. Qian et al., Int. J. Mod. Phys. B 33, 1950369 (2019)

    Article  CAS  Google Scholar 

  33. L.L. Ke, Y.S. Wang, Smart Mater. Struct. 21, 025018 (2012)

    Article  Google Scholar 

  34. W. Liu et al., Phys. Lett. A 376, 605 (2012)

    Article  CAS  Google Scholar 

  35. W. Liu et al., Int. J. Appl. Mech. 6, 1450005 (2014)

    Article  Google Scholar 

  36. B. Cai, P. Wei, Acta Mech. 224, 2749 (2013)

    Article  Google Scholar 

  37. D.H. Qian, J. Appl. Phys. 124, 055101 (2018)

    Article  Google Scholar 

  38. D.H. Qian, J. Mater. Sci. 54, 4038 (2019)

    Article  CAS  Google Scholar 

  39. M. Espo et al., Acta Mech. 231, 2877 (2020)

    Article  Google Scholar 

  40. W.J. Zhou et al., Compos. Struct. 216, 427 (2019)

    Article  Google Scholar 

  41. C. Abourached et al., J. Clean. Prod. 137, 144 (2016)

    Article  CAS  Google Scholar 

  42. M. Oudich et al., New. J. Phys. 12, 083049 (2010)

    Article  Google Scholar 

  43. Z. Yan, L.Y. Jiang, Nanotechnology 22, 245703 (2011)

    Article  CAS  Google Scholar 

  44. G.Y. Huang, S.W. Yu, Phys. Status Solidi B 243, R22 (2006)

    Article  CAS  Google Scholar 

Download references

Funding

This work is supported in part by the National Natural Science Foundation of China (grants nos. 11672007) and the Key Scientific and Technological Program of Henan Province (grant no. 222102110162).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the given study.

Corresponding author

Correspondence to Yong-Wang Zhang.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Ethical approval

This manuscript does not contain any stuff which needed ethical approval.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, XN., Zhang, YW. Band structure of a magneto-electro-elastic phononic crystal nanobeam with surface effect and size effect. J Mater Sci: Mater Electron 34, 662 (2023). https://doi.org/10.1007/s10854-023-10054-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10054-0

Navigation