Skip to main content
Log in

Electro-mechanical coupling wave propagating in a locally resonant piezoelectric/elastic phononic crystal nanobeam with surface effects

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

The model of a “spring-mass” resonator periodically attached to a piezoelectric/elastic phononic crystal (PC) nanobeam with surface effects is proposed, and the corresponding calculation method of the band structures is formulized and displayed by introducing the Euler beam theory and the surface piezoelectricity theory to the plane wave expansion (PWE) method. In order to reveal the unique wave propagation characteristics of such a model, band structures of locally resonant (LR) elastic PC Euler nanobeams with and without resonators, band structures of LR piezoelectric PC Euler nanobeams with and without resonators, as well as band structures of LR elastic/piezoelectric PC Euler nanobeams with resonators attached on PZT-4, with resonators attached on epoxy, and without resonators are compared. Results demonstrate that adding resonators indeed plays an active role in opening and widening band gaps. Moreover, the influence rules of different parameters on band gaps of LR elastic/piezoelectric PC Euler nanobeams with resonators attached on epoxy are discussed, which will play an active role in the further realization of active control of wave propagations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. ALMUSALLAM, A., LUO, Z. H., KOMOLAFE, A., YANG, K., ROBINSON, A., TORAH, R., and BEEBY, S. Flexible piezoelectric nano-composite films for kinetic energy harvesting from textiles. Nano Energy, 33, 146–156 (2017)

    Article  Google Scholar 

  2. LI, Y. D., BAO, R., and CHEN, W. Buckling of a piezoelectric nanobeam with interfacial imperfection and van der Waals force: is nonlocal effect really always dominant? Composite Structures, 194, 357–364 (2018)

    Article  Google Scholar 

  3. ZHANG, Y. H., HONG, J. W., LIU, B., and FANG, D. N. Strain effect on ferroelectric behaviors of BaTiO3 nanowires: a molecular dynamics study. Nanotechnology, 21(1), 015701 (2010)

    Article  Google Scholar 

  4. YANG, Y., GUO, W., WANG, X. Q., WANG, Z. Z., QI, J. J., and ZHANG, Y. Size dependence of dielectric constant in a single pencil-like ZnO nanowire. Nano Letters, 12(4), 1919–1922 (2012)

    Article  Google Scholar 

  5. AREFI, M. Surface effect and non-local elasticity in wave propagation of functionally graded piezoelectric nano-rod excited to applied voltage. Applied Mathematics and Mechanics (English Edition), 37(3), 289–302 (2016) https://doi.org/10.1007/s10483-016-2039-6

    Article  MathSciNet  Google Scholar 

  6. ZHOU, Y. R., YANG, X., PAN, D. M., and WANG, B. L. Improved incorporation of strain gradient elasticity in the flexoelectricity based energy harvesting from nanobeams. Physica E: Low-dimensional Systems and Nanostructures, 98, 148–158 (2018)

    Article  Google Scholar 

  7. ZENG, S., WANG, B. L., and WANG, K. F. Static stability analysis of nanoscale piezoelectric shells with flexoelectric effect based on couple stress theory. Microsystem Technologies, 24(7), 2957–2967 (2018)

    Article  Google Scholar 

  8. GURTIN, M. E. and MURDOCH, A. I. A continuum theory of elastic material surfaces. Archive for Rational Mechanics & Analysis, 57(4), 291–323 (1975)

    Article  MathSciNet  Google Scholar 

  9. MILLER, R. E. and SHENOY, V. B. Size-dependent elastic properties of nanosized structural elements. Nanotechnology, 11(3), 139–147 (2000)

    Article  Google Scholar 

  10. HUANG, G. Y. and YU, S. W. Effect of surface piezoelectricity on the electromechanical behaviour of a piezoelectric ring. Physica Status Solidi, 243(4), 22–24 (2006)

    Article  Google Scholar 

  11. XU, X. J., DENG, Z. C., and WANG, B. Closed solutions for the electromechanical bending and vibration of thick piezoelectric nanobeams with surface effects. Journal of Physics D: Applied Physics, 46(40), 405302 (2013)

    Article  Google Scholar 

  12. WANG, K. F. and WANG, B. L. Nonlinear fracture mechanics analysis of nano-scale piezoelectric double cantilever beam specimens with surface effect. European Journal of Mechanics A/Solids, 56, 12–18 (2016)

    Article  MathSciNet  Google Scholar 

  13. YUE, Y. M., XU, K. Y., ZHANG, X. D., and WANG, W. J. Effect of surface stress and surface-induced stress on behavior of piezoelectric nanobeam. Applied Mathematics and Mechanics (English Edition), 39(7), 953–966 (2018) https://doi.org/10.1007/s10483-018-2346-8

    Article  MathSciNet  Google Scholar 

  14. FANG, X. Q., ZHU, C. S., LIU, J. X., and LIU, X. L. Surface energy effect on free vibration of nano-sized piezoelectric double-shell structures. Physica B: Condensed Matter, 529, 41–56 (2018)

    Article  Google Scholar 

  15. MIRANDA, E. J. P., JR. and DOS SANTOS, J. M. C. Complete band gaps in nanopiezoelec-tricphononic crystals. Materials Research, 20, 15–38 (2017)

    Article  Google Scholar 

  16. YAN, Z., WEI, C., and ZHANG, C. Band structure calculation of SH waves in nanoscale multi-layered piezoelectric phononic crystals using radial basis function method with consideration of nonlocal interface effects. Ultrasonics, 73, 169–180 (2017)

    Article  Google Scholar 

  17. QIAN, D. H. Bandgap properties of a piezoelectric phononic crystal nanobeam based on nonlocal theory. Journal of Materials Science, 54(5), 4038–4048 (2019)

    Article  Google Scholar 

  18. WANG, Y. Z., LI, F. M., HUANG, W. H., and WANG, Y. S. Effects of inclusion shapes on the band gaps in two-dimensional piezoelectric phononic crystals. Journal of Physics: Condensed Matter, 19(49), 496204 (2007)

    Google Scholar 

  19. WANG, Y. Z., LI, F. M., HUANG, W. H., and WANG, Y. S. The propagation and localization of Rayleigh waves in disordered piezoelectric phononic crystals. Journal of the Mechanics and Physics of Solids, 56(4), 1578–1590 (2008)

    Article  Google Scholar 

  20. WANG, Y. Z., LI, F. M., KISHIMOTO, K., WANG, Y. S., and HUANG, W. H. Band gaps of elastic waves in three-dimensional piezoelectric phononic crystals with initial stress. European Journal of Mechanics A/Solids, 29(2), 182–189 (2010)

    Article  Google Scholar 

  21. JIANG, S., DAI, L. X., CHEN, H., HU, H. P., JIANG, W., and CHEN, X. D. Folding beam-type piezoelectric phononic crystal with low-frequency and broad band gap. Applied Mathematics and Mechanics (English Edition), 38(3), 411–422 (2017) https://doi.org/10.1007/s10483-017-2171-7

    Article  MathSciNet  Google Scholar 

  22. NAGATY, A., MEHANEY, A., and ALY, A. H. Influence of temperature on the properties of one-dimensional piezoelectric phononic crystals. Chinese Physics B, 27(9), 346–349 (2018)

    Article  Google Scholar 

  23. YAN, X. J., LIU, X. P., NI, X., CHEN, Z. G., LU, M. H., and CHEN, Y. F. Reduce thermal conductivity by forming a nano-phononic crystal on a Si slab. Europhysics Letters, 106(5), 56002 (2014)

    Article  Google Scholar 

  24. TRAVAGLIATI, M., NARDI, D., GIANNETTI, C., GUSEV, V., PINGUE, P., PIAZZA, V., FERRINI, G., and BANFI, F. Interface nano-confined acoustic waves in polymeric surface phononic crystals. Applied Physics Letters, 106(2), 021906 (2015)

    Article  Google Scholar 

  25. XIAO, Y., WEN, J., and WEN, X. Flexural wave band gaps in locally resonant thin plates with periodically attached spring-mass resonators. Journal of Physics D: Applied Physics, 45(19), 195401 (2012)

    Article  Google Scholar 

  26. QIAN, D. H. and SHI, Z. Y. Bandgap properties in locally resonant phononic crystal double panel structures with periodically attached spring-mass resonators. Physics Letters A, 380(41), 3319–3325 (2016)

    Article  Google Scholar 

  27. QIAN, D. H. Bandgap properties of a piezoelectric phononic crystal nanobeam with surface effect. Journal of Applied Physics, 124(5), 055101 (2018)

    Article  Google Scholar 

  28. QIAN, D. H., SHI, Z. Y., NING, C. W., and WANG, J. C. Nonlinear bandgap properties in a nonlocal piezoelectric phononic crystal nanobeam. Physics Letters A, 383(25), 3101–3107 (2019)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Denghui Qian.

Additional information

Project supported by the National Natural Science Foundation of China (No. 11847009) and Natural Science Foundation of Suzhou University of Science and Technology (No. XKQ2018007)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qian, D. Electro-mechanical coupling wave propagating in a locally resonant piezoelectric/elastic phononic crystal nanobeam with surface effects. Appl. Math. Mech.-Engl. Ed. 41, 425–438 (2020). https://doi.org/10.1007/s10483-020-2586-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10483-020-2586-5

Key words

Chinese Library Classification

2010 Mathematics Subject Classification

Navigation