Skip to main content
Log in

Continuous wave laser-induced nonlinear optical properties of nanofluids based on graphene quantum dot

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

This work reports the third-order nonlinear optical study of graphene quantum dot-based nanofluid. Graphene quantum dots have proved their superiority over conventional semiconductor quantum dots in a wide range of applications. However, the experimental probe of their third-order nonlinear optical properties for photonics application remains scarce. The structural, morphological and compositional analysis of the graphene quantum dot nanofluids was achieved using Transmission electron microscopy, X-ray diffraction, Raman spectroscopy, Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. The excellent linear optical properties were revealed through UV–visible absorption spectroscopy along with Photoluminescence spectroscopy. Z-scan technique utilizing a continuous wave laser at 532 nm wavelength was employed to study the third-order nonlinear optical properties of the material. Open-aperture and closed-aperture Z-scan measurements, respectively, display the reverse saturable absorption and self-defocusing effect. The nonlinear absorption coefficient β, nonlinear refractive index n2, and third-order nonlinear susceptibility obtained in the order of 10–4 cm/W, 10–9 cm2/W and 10–6 e.s.u are comparable with those of graphene-based materials reported. Thus, this study proves the potential of graphene quantum dot nanofluids in optoelectronic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. R. Del Coso, J. Solis, Relation between nonlinear refractive index and third-order susceptibility in absorbing media. JOSA B. 21(3), 640–644 (2004). https://doi.org/10.1364/JOSAB.21.000640

    Article  Google Scholar 

  2. N. Liaros, P. Aloukos, A. Kolokithas-Ntoukas, A. Bakandritsos, T. Szabo, R. Zboril et al., Nonlinear optical properties and broadband optical power limiting action of graphene oxide colloids. J. Phys. Chem. C. 117(13), 6842–6850 (2013). https://doi.org/10.1021/jp400559

    Article  CAS  Google Scholar 

  3. I. Parra, S. Valbuena, F. Racedo, Measurement of non-linear optical properties in graphene oxide using the Z-scan technique. Spectrochim. Acta Part A: Mol. Biomol. Spectrosc. 244, 118833 (2021). https://doi.org/10.1016/j.saa.2020.118833

    Article  CAS  Google Scholar 

  4. K. Kumara, T.C. Shetty, S.R. Maidur, P.S. Patil, S.M. Dharmaprakash, Continuous wave laser induced nonlinear optical response of nitrogen doped graphene oxide. Optik 1(178), 384–393 (2019). https://doi.org/10.1016/j.ijleo.2018.09.181

    Article  CAS  Google Scholar 

  5. X.L. Zhang, Z.B. Liu, X.C. Li, Q. Ma, X.D. Chen, J.G. Tian, Y.F. Xu, Y.S. Chen, Transient thermal effect, nonlinear refraction and nonlinear absorption properties of graphene oxide sheets in dispersion. Opt. Express 21(6), 7511–7520 (2013). https://doi.org/10.1364/OE.21.007511

    Article  CAS  Google Scholar 

  6. G. Muruganandi, M. Saravanan, G. Vinitha, M.J. Raj, T.S. Girisun, Effect of reducing agents in tuning the third-order optical nonlinearity and optical limiting behavior of reduced graphene oxide. Chem. Phys. 11(488), 55–61 (2017). https://doi.org/10.1016/j.chemphys.2017.03.002

    Article  CAS  Google Scholar 

  7. M. Saravanan, T.S. Girisun, G. Vinitha, S.V. Rao, Improved third-order optical nonlinearity and optical limiting behaviour of (nanospindle and nanosphere) zinc ferrite decorated reduced graphene oxide under continuous and ultrafast laser excitation. RSC Adv. 6(94), 91083–91092 (2016). https://doi.org/10.1039/C6RA21428B

    Article  CAS  Google Scholar 

  8. P. Chantharasupawong, R. Philip, N.T. Narayanan, P.M. Sudeep, A. Mathkar, P.M. Ajayan, J. Thomas, Optical power limiting in fluorinated graphene oxide: an insight into the nonlinear optical properties. J. Phys. Chem. C. 116(49), 25955–25961 (2012). https://doi.org/10.1021/jp3096693

    Article  CAS  Google Scholar 

  9. T. Remyamol, H. John, P. Gopinath, Synthesis and nonlinear optical properties of reduced graphene oxide covalently functionalized with polyaniline. Carbon 1(59), 308–314 (2013). https://doi.org/10.1016/j.carbon.2013.03.023

    Article  CAS  Google Scholar 

  10. J. Deb, D. Paul, U. Sarkar, Density functional theory investigation of nonlinear optical properties of T-graphene quantum dots. J. Phys. Chem. A 124(7), 1312–1320 (2020). https://doi.org/10.1021/acs.jpca.9b10241

    Article  CAS  Google Scholar 

  11. S.S. Yamijala, M. Mukhopadhyay, S.K. Pati, Linear and nonlinear optical properties of graphene quantum dots: A computational study. J. Phys. Chem. C 119(21), 12079–12087 (2015). https://doi.org/10.1021/acs.jpcc.5b03531

    Article  CAS  Google Scholar 

  12. X. Zheng, M. Feng, Z. Li, Y. Song, H. Zhan, Enhanced nonlinear optical properties of nonzero-bandgap graphene materials in glass matrices. J. Mater. Chem. C 2(21), 4121–4125 (2014). https://doi.org/10.1039/C3TC32410A

    Article  CAS  Google Scholar 

  13. H. Wang, C. Ciret, C. Cassagne, G. Boudebs, Measurement of the third order optical nonlinearities of graphene quantum dots in water at 355 nm, 532 nm and 1064 nm. Opt. Mater. Express 9(2), 339–351 (2019). https://doi.org/10.1364/OME.9.000339

    Article  Google Scholar 

  14. C. Hu, Y. Liu, Y. Yang, J. Cui, Z. Huang, Y. Wang, L. Yang, H. Wang, Y. Xiao, J. Rong, One-step preparation of nitrogen-doped graphene quantum dots from oxidized debris of graphene oxide. J. Mater. Chem. B 1(1), 39–42 (2013). https://doi.org/10.1039/C2TB00189F

    Article  CAS  Google Scholar 

  15. H. Tetsuka, R. Asahi, A. Nagoya, K. Okamoto, I. Tajima, R. Ohta, A. Okamoto, Optically tunable amino-functionalized graphene quantum dots. Adv. Mater. 24(39), 5333–5338 (2012). https://doi.org/10.1002/adma.201201930

    Article  CAS  Google Scholar 

  16. A. Halder, M. Godoy-Gallardo, J. Ashley, X. Feng, T. Zhou, L. Hosta-Rigau, Y. Sun, One-pot green synthesis of biocompatible graphene quantum dots and their cell uptake studies. ACS Appl. Bio. Mater. 1(2), 452–461 (2018). https://doi.org/10.1021/acsabm.8b00170

    Article  CAS  Google Scholar 

  17. J. Peng, W. Gao, B.K. Gupta, Z. Liu, R. Romero-Aburto, L. Ge, L. Song, L.B. Alemany, X. Zhan, G. Gao, S.A. Vithayathil, Graphene quantum dots derived from carbon fibers. Nano Lett. 12(2), 844–849 (2012). https://doi.org/10.1021/nl2038979

    Article  CAS  Google Scholar 

  18. Z. Zhang, J. Zhang, N. Chen, L. Qu, Graphene quantum dots: an emerging material for energy-related applications and beyond. Energy Environ. Sci. 5(10), 8869–8890 (2012). https://doi.org/10.1039/C2EE22982J

    Article  CAS  Google Scholar 

  19. S. Zhang, L. Sui, H. Dong, W. He, L. Dong, L. Yu, High-performance supercapacitor of graphene quantum dots with uniform sizes. ACS Appl. Mater. Interfaces 10(15), 12983–12991 (2018). https://doi.org/10.1021/acsami.8b00323

    Article  CAS  Google Scholar 

  20. H. Liu, X. Lv, C. Li, Y. Qian, X. Wang, L. Hu, Y. Wang, W. Lin, H. Wang, Direct carbonization of organic solvents toward graphene quantum dots. Nanoscale 12(20), 10956–10963 (2020). https://doi.org/10.1039/D0NR01903H

    Article  CAS  Google Scholar 

  21. J. Shen, Y. Zhu, X. Yang, J. Zong, J. Zhang, C. Li, One-pot hydrothermal synthesis of graphene quantum dots surface-passivated by polyethylene glycol and their photoelectric conversion under near-infrared light. New J. Chem. 36(1), 97–101 (2012). https://doi.org/10.1039/C1NJ20658C

    Article  CAS  Google Scholar 

  22. E. Blanco, G. Blanco, J.M. Gonzalez-Leal, M.C. Barrera, M. Domínguez, M. Ramirez-del-Solar, Green and fast synthesis of amino-functionalized graphene quantum dots with deep blue photoluminescence. J. Nanopart. Res. 17(5), 1–3 (2015). https://doi.org/10.1007/s11051-015-3024-3

    Article  CAS  Google Scholar 

  23. X. Sun, H.J. Li, N. Ou, B. Lyu, B. Gui, S. Tian, D. Qian, X. Wang, J. Yang, Visible-light driven TiO2 photocatalyst coated with graphene quantum dots of tunable nitrogen doping. Molecules 24(2), 344 (2019). https://doi.org/10.3390/molecules24020344

    Article  CAS  Google Scholar 

  24. S. Sarkar, D. Gandla, Y. Venkatesh, P.R. Bangal, S. Ghosh, Y. Yang, S. Misra, Graphene quantum dots from graphite by liquid exfoliation showing excitation-independent emission, fluorescence upconversion and delayed fluorescence. Phys. Chem. Chem. Phys. 18(31), 21278–21287 (2016). https://doi.org/10.1039/C6CP01528J

    Article  CAS  Google Scholar 

  25. J.Y. Lee, N.Y. Kim, D.Y. Shin, H.Y. Park, S.S. Lee, S. Joon Kwon, D.H. Lim, K.W. Bong, J.G. Son, J.Y. Kim, Nitrogen-doped graphene-wrapped iron nanofragments for high-performance oxygen reduction electrocatalysts. J. Nanopart. Res. 19(3), 1–3 (2017). https://doi.org/10.1007/s11051-017-3793-y

    Article  CAS  Google Scholar 

  26. J. Su, X. Zhang, X. Tong, X. Wang, P. Yang, F. Yao, R. Guo, C. Yuan, Preparation of graphene quantum dots with high quantum yield by a facile one-step method and applications for cell imaging. Mater. Lett. 271, 127806 (2020). https://doi.org/10.1016/j.matlet.2020.127806

    Article  CAS  Google Scholar 

  27. Z. Xing, Z. Ju, Y. Zhao, J. Wan, Y. Zhu, Y. Qiang, Y. Qian, One-pot hydrothermal synthesis of Nitrogen-doped graphene as high-performance anode materials for lithium ion batteries. Sci. Rep. 6(1), 1 (2016). https://doi.org/10.1038/srep26146

    Article  CAS  Google Scholar 

  28. S. Ahirwar, S. Mallick, D. Bahadur, Electrochemical method to prepare graphene quantum dots and graphene oxide quantum dots. ACS Omega 2(11), 8343–8353 (2017). https://doi.org/10.1021/acsomega.7b01539

    Article  CAS  Google Scholar 

  29. C. Zhu, S. Yang, G. Wang, R. Mo, P. He, J. Sun, Z. Di, N. Yuan, J. Ding, G. Ding, X. Xie, Negative induction effect of graphite N on graphene quantum dots: tunable band gap photoluminescence. J. Mater. Chem. C 3(34), 8810–8816 (2015). https://doi.org/10.1039/C5TC01933H

    Article  CAS  Google Scholar 

  30. D.Y. Golian, A. Hojabri, Investigation of nitrogen plasma effect on the nonlinear optical properties of PMMA. J. Theor. Appl. Phys. 6(1), 1–8 (2012). https://doi.org/10.1186/2251-7235-6-1

    Article  Google Scholar 

  31. J. John, R.M. Mathew, I. Rejeena, R. Jayakrishnan, S. Mathew, V. Thomas, A. Mujeeb, Nonlinear optical limiting and dual beam mode matched thermal lensing of nano fluids containing green synthesized copper nanoparticles. J. Mol. Liq. 1(279), 63–66 (2019). https://doi.org/10.1016/j.molliq.2019.01.125

    Article  CAS  Google Scholar 

  32. M. Saravanan, T.C. Sabari Girisun, G. Vinitha, Third-order nonlinear optical properties and power limiting behavior of magnesium ferrite under CW laser (532 nm, 50 mW) excitation. J. Mater. Sci. 51(6), 3289–3296 (2016). https://doi.org/10.1007/s10853-015-9642-4

    Article  CAS  Google Scholar 

  33. S. Wang, Y. Dong, C. He, Y. Gao, N. Jia, Z. Chen, W. Song, The role of sp 2/sp 3 hybrid carbon regulation in the nonlinear optical properties of graphene oxide materials. RSC Adv. 7(84), 53643–53652 (2017). https://doi.org/10.1039/C7RA10505C

    Article  CAS  Google Scholar 

  34. Kumara K, Shetty TC, Patil PS, Maidur SR, Dharmaprakash SM. Third order nonlinear optical properties of graphene quantum dots under continuous wavelength regime at 532 nm. InAIP Conference Proceedings 2018 Apr 10 (Vol. 1942, No. 1, p. 050003). AIP Publishing LLC. https://doi.org/10.1063/1.5028634

  35. V.G. Sreeja, G. Vinitha, R. Reshmi, E.I. Anila, M.K. Jayaraj, Effect of reduction time on third order optical nonlinearity of reduced graphene oxide. Opt. Mater. 1(66), 460–468 (2017). https://doi.org/10.1016/j.optmat.2017.01.042

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the analysis support from the Sophisticated Test and Instrumentation Centre, CUSAT, Kochi, Sophisticated Analytical Instrument Facility, Mahatma Gandhi University, Central Laboratory for Instrumentation and Facilitation, University of Kerala and St. Thomas College, Thrissur, Kerala.

Funding

The authors acknowledge the financial assistance provided by the Department of Bio-technology STAR scheme (BT/HRD/11/053/2019), Science Engineering Research Board (SERB, EMR/2017/000178) Government of India, Kerala State Council for Science Technology and Environment (KSCSTE)(SAARD 607/2015/KSCSTE).

Author information

Authors and Affiliations

Authors

Contributions

ESZ: Formal analysis, Investigation, data curation, Writing—original draft preparation; RMM: data curation, Writing—review and editing; JJ: Writing—review and editing, VG: resources, VT: Writing—review and editing, supervision, RI: Writing—review and editing, supervision.

Corresponding author

Correspondence to I. Rejeena.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest in regard to this publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zachariah, E.S., Mathew, R.M., Jose, J. et al. Continuous wave laser-induced nonlinear optical properties of nanofluids based on graphene quantum dot. J Mater Sci: Mater Electron 34, 453 (2023). https://doi.org/10.1007/s10854-023-09930-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-09930-6

Navigation