Skip to main content
Log in

Synthesis and investigation of electromechanical property of lead-free BiFeO3–BaTiO3 quenched ceramics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Lead-free bulk ceramics 0.67Bi1.03Fe1−xNbxO3-0.33BaTiO3 (BFNbBT with x = 0.00, 0.01, 0.02 and 0.03) were fabricated via a solid-state reaction method and then quenched in the air from its sintering temperature. The XRD analysis shows a morphotropic phase boundary between rhombohedral and tetragonal phases for the un-doped BFBT ceramics. Therefore, a high static piezoelectric coefficient (d33 ≈ 268 pC/N) with a large remnant polarization (Pr ≈ 20 µC/cm2) and the highest Curie temperature (TC ≈ 510 °C) were obtained. However, with Nb doping, a compositionally driven phase transformation occurred from rhombohedral and tetragonal mixed phase to pseudo-cubic phase. Because of the Nb doping, the grain size suddenly decreased, as a result, the long-range ferroelectric phase was converted into a short-range relaxor phase. Hence, a high dynamic piezoelectric constant (d33* ≈ 353 pm/V) was achieved at the crossover boundary between the normal and relaxor ferroelectric phases. In the current investigated results, the microstructure and crystal structure properties show a strong correlation with dielectric, ferroelectric and piezoelectric properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

All data and analysis were available on request.

References

  1. M. Habib, M.H. Lee, D.J. Kim et al., J. Materiomics 7, 40–50 (2020)

    Article  Google Scholar 

  2. R.A. Malik, A. Hussain, A. Zaman et al., RSC Adv. 5, 103315–103315 (2015)

    Article  CAS  Google Scholar 

  3. R.A. Malik, A. Hussain, A. Maqbool et al., J. Alloys Compd. 682, 302–310 (2016)

    Article  CAS  Google Scholar 

  4. A. Hussain, A. Maqbool, R.A. Malik et al., Phys. Status Solidi (a) 215, 1700942 (2018)

    Article  Google Scholar 

  5. D. Wang, G. Wang, S. Murakami et al., J. Adv. Dielectr. 8, 1830004 (2018)

    Article  CAS  Google Scholar 

  6. S. Kong, C. Hong, W. Zhang et al., J. Am. Ceram. Soc. 105, 4744–4750 (2022)

    Article  CAS  Google Scholar 

  7. Z. Li, H.C. Thong, Y.F. Zhang et al., Adv. Funct. Mater. 31, 2005012 (2021)

    Article  CAS  Google Scholar 

  8. D.J. Kim, M.H. Lee, T.K. Song, J. Eur. Ceram. Soc. 39, 4697–4704 (2019)

    Article  CAS  Google Scholar 

  9. S.A. Khan, F. Akram, J. Kim et al., J. Korean Phys. Soc. 75, 811–816 (2019)

    Article  CAS  Google Scholar 

  10. M. Habib, M.J. Iqbal, M.H. Lee et al., Mater. Res. Bull. 146, 111571 (2022)

    Article  CAS  Google Scholar 

  11. B. Lu, P. Li, Z. Tang et al., Sci. Rep. 7, 45335 (2017)

    Article  CAS  Google Scholar 

  12. H.-L. Li, Q. Liu, J.-J. Zhou et al., J. Eur. Ceram. Soc. 36, 2849–2853 (2016)

    Article  CAS  Google Scholar 

  13. M. Habib, M. Munir, S.A. Khan et al., J. Phys. Chem. Sol. 138, 109230 (2020)

    Article  CAS  Google Scholar 

  14. X. Lv, J. Wu, J. Mater. Chem. A 8, 10026–10073 (2020)

    Article  CAS  Google Scholar 

  15. X. Lv, J. Wu, X.-X. Zhang, ACS Appl. Mater. Interfaces 12, 49795–49804 (2020)

    Article  CAS  Google Scholar 

  16. X. Lv, J. Zhu, D. Xiao, JWu. X-x Zhang, Chem. Soc. Rev. 49, 671–707 (2020)

    Article  CAS  Google Scholar 

  17. K. Wang, J.F. Li, Adv. Funct. Mater. 20, 1924–1929 (2010)

    Article  CAS  Google Scholar 

  18. O.A. Condurache, K. Radan, U. Prah et al., Materials 12, 4049 (2019)

    Article  CAS  Google Scholar 

  19. Y. Saito, H. Takao, T. Tani et al., Nature 432, 84–87 (2004)

    Article  CAS  Google Scholar 

  20. W.R. Liu, Xiaobing, Phys. Rev. Lett. 103, 257602 (2009)

    Article  Google Scholar 

  21. Y. Liu, Y. Chang, F. Li et al., ACS Appl. Mater. Interfaces 9, 29863–29871 (2017)

    Article  CAS  Google Scholar 

  22. K. Wang, F.Z. Yao, W. Jo et al., Adv. Funct. Mater. 23, 4079–4086 (2013)

    Article  CAS  Google Scholar 

  23. T. Ahmed, S.A. Khan, J. Bae et al., Solid State Sci. 114, 106562 (2021)

    Article  CAS  Google Scholar 

  24. L.-F. Zhu, B.-P. Zhang, L. Zhao, J.-F. Li, J. Mater. Chem. C 2, 4764–4771 (2014)

    Article  CAS  Google Scholar 

  25. C.-H. Hong, H.-P. Kim, B.-Y. Choi et al., J. Materiomics 2, 1–24 (2016)

    Article  Google Scholar 

  26. H. Nam, S. Kim, T. Aizawa, I. Fujii, S. Ueno, S. Wada, Ceram. Int. 44, S199–S202 (2018)

    Article  CAS  Google Scholar 

  27. M.H. Lee, D.J. Kim, H.I. Choi et al., ACS Appl. Electron. Mater. 1, 1772–1780 (2019)

    Article  CAS  Google Scholar 

  28. C. Slouka, T. Kainz, E. Navickas et al., Materials 9, 945 (2016)

    Article  Google Scholar 

  29. M. Habib, F. Akram, A. Rahman et al., Mater. Chem. Phys. 287, 126326 (2022)

    Article  CAS  Google Scholar 

  30. Z. Yang, B. Wang, Y. Li, D.A. Hall, Materials 15, 2872 (2022)

    Article  CAS  Google Scholar 

  31. M. Habib, F. Akram, A. Rahman et al., Mater. Chem. Phys. 287, 126326 (2022)

    Article  CAS  Google Scholar 

  32. M. Habib, M.H. Lee, D.J. Kim et al., Ceram. Int. 46, 22239–22252 (2020)

    Article  CAS  Google Scholar 

  33. Y. Liu, Z. Ling, Z. Zhuo, J. Alloys Compd. 727, 925–930 (2017)

    Article  CAS  Google Scholar 

  34. A. Ullah, R.A. Malik, A. Ullah et al., J. Eur. Ceram. Soc. 34, 29–35 (2014)

    Article  CAS  Google Scholar 

  35. Q. Liu, Y. Zhang, J. Gao et al., Energy Environ. Sci. 11, 3531–3539 (2018)

    Article  CAS  Google Scholar 

  36. X. Lv, J. Wu, J. Zhu, D. Xiao, X.X. Zhang, J. Am. Ceram. Soc. 101, 4084–4094 (2018)

    Article  CAS  Google Scholar 

  37. Q. Liu, Y. Zhang, L. Zhao et al., J. Mater. Chem. C 6, 10618–10627 (2018)

    Article  CAS  Google Scholar 

  38. Y. Zhang, J.-F. Li, J. Mater. Chem. C 7, 4284–4303 (2019)

    Article  Google Scholar 

  39. F. Akram, A. Hussain, R.A. Malik, T.K. Song, W.-J. Kim, M.-H. Kim, Ceram. Int. 43, 209–213 (2017)

    Article  Google Scholar 

  40. M. Habib, F. Akram, P. Ahmad et al., Mater. Lett. 315, 131950 (2022)

    Article  CAS  Google Scholar 

  41. A. Rachakom, S. Jiansirisomboon, A. Watcharapasorn, J. Electroceramics 33, 105–110 (2014)

    Article  CAS  Google Scholar 

  42. F. Li, S. Zhang, T. Yang et al., Nat. Commun. 7, 13807 (2016)

    Article  CAS  Google Scholar 

  43. R.A. Malik, A. Hussain, A. Maqbool et al., J. Am. Ceram. Soc. 98, 3842–3848 (2015)

    Article  CAS  Google Scholar 

  44. J. Chen, B. Xu, X.Q. Liu, T.T. Gao, L. Bellaiche, X.M. Chen, Adv. Funct. Mater. 29, 1806399 (2019)

    Article  Google Scholar 

  45. J. Hao, W. Li, J. Zhai, H. Chen, Mater. Sci. Eng. R Rep. 135, 1–57 (2019)

    Article  Google Scholar 

  46. C.A. Randall, N. Kim, J.P. Kucera, W. Cao, T.R. Shrout, J. Am. Ceram. Soc. 81, 677–688 (1998)

    Article  CAS  Google Scholar 

  47. Y. Li, Z. Zhang, Y. Chen, D.A. Hall, Acta Mater. 160, 199–210 (2018)

    Article  CAS  Google Scholar 

  48. R.A. Malik, A. Zaman, A. Hussain et al., J. Eur. Ceram. Soc. 43, S198–S203 (2017)

    CAS  Google Scholar 

  49. X. Chou, J. Zhai, H. Jiang, X. Yao, J. Appl. Phys. 102, 084106 (2007)

    Article  Google Scholar 

Download references

Acknowledgements

The authors extend their appreciation to the deputyship for Research & Innovation, Ministry of Education in Saudi Arabia for funding this research work through the project number 223202 and Higher Education Commission of Pakistan (HEC) for providing funds for our research work under the National Research Program for Universities (NRPU) project No 10928. Dr. P.T. Tho would like to thank for the support from Van Lang University.

Funding

This work is supported by the deputyship for Research & Innovation, Ministry of Education in Saudi Arabia for funding this research work through the project number 223202 and Higher Education Commission of Pakistan (HEC) under National Research Program for Universities (NRPU) project number 10928.

Author information

Authors and Affiliations

Authors

Contributions

QI, MH and YAS performed the experiment, analyzed data, and prepare the first draft of the manuscript. MH, MA, MTK, PTT and Dr. Pervaiz Ahmad finalized the final manuscript and supervised this research work.

Corresponding authors

Correspondence to Muhammad Habib or P. T. Tho.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iqbal, Q., Habib, M., Alzaid, M. et al. Synthesis and investigation of electromechanical property of lead-free BiFeO3–BaTiO3 quenched ceramics. J Mater Sci: Mater Electron 34, 404 (2023). https://doi.org/10.1007/s10854-023-09837-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-09837-2

Navigation