Skip to main content
Log in

Structural phase boundary of BiFeO3–Bi(Zn1/2Ti1/2)O3–BaTiO3 lead-free ceramics and their piezoelectric properties

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this article, low dielectric loss pure or Mn-doped BiFeO3–Bi(Zn1/2Ti1/2)O3–BaTiO3 (BF–BZT–BT) lead-free piezoceramics with various compositions were prepared using a refined solid state reaction electroceramic processing. The rhombohedral-pseudocubic structural phase boundary was determined with powder X-ray diffraction method and found dependent on ceramic grain size, which shifts far away from the BF-rich corner with increasing microstructure grain size. In contrast to BF–BT binary system, low dielectric loss was understood by mechanism of reduction of oxygen vacancies with doping MnO2 combined with stabilization of Bi-perovskite phase by adding BZT third member. Full piezoresponse of d 33 ≥ 145 pC/N was obtained in the Mn-doped BF–xBZT–yBT (0.01 < x < 0.05 and 0.27 ≤ y ≤ 0.31) coarse-grained ceramics near the structural phase boundary, in agreement with prediction by relationship of d 33 =  33 −  233 . Ferroelectric polarization subswitching and related low piezoresponse observed in the BZT-riched ceramics were observed and argued extrinsically resulting from residual internal stresses. Primary experiments showed annealing and subsequent quenching treatment eliminate residual internal stresses and increase piezoresponse for the BZT-riched ceramics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. G.H. Haertling, J. Am. Ceram. Soc. 82, 797 (1999)

    Article  Google Scholar 

  2. J. Rödel, W. Jo, K.T.P. Seifert, E.M. Anton, T. Granzow, D. Damjanovic, J. Am. Ceram. Soc. 92, 1153 (2005)

    Article  Google Scholar 

  3. T. Shrout, S.J. Zhang, J. Electroceram. 19, 113 (2007)

    Article  Google Scholar 

  4. S.O. Leontsev, R.E. Eitel, Sci. Technol. Adv. Mater. 11, 044302 (2010)

    Article  Google Scholar 

  5. Y. Saito, H. Takao, T. Tani, T. Nonoyama, K. Takatori, T. Homma, T. Nagaya, M. Nakamura, Nature 432, 84 (2004)

    Article  Google Scholar 

  6. T. Takenaka, K. Maruyama, K. Sakata, Jpn. J. Appl. Phys. 30, 2236 (1991)

    Article  Google Scholar 

  7. W. Liu, X.B. Ren, Phys. Rev. Lett. 103, 257602 (2009)

    Article  Google Scholar 

  8. L. Zhang, M. Zhang, L. Wang, C. Zhou, Z. Zhang, Y.G. Yao, L.X. Zhang, D.Z. Xue, X.J. Lou, X.B. Ren, Appl. Phys. Lett. 105, 162908 (2014)

    Article  Google Scholar 

  9. H.X. Bao, C. Zhou, D.Z. Xue, J.H. Gao, X.B. Ren, J. Phys. D Appl. Phys. 43, 465401 (2010)

    Article  Google Scholar 

  10. B. Jaffe, W.R. Cook, H. Jaffe, Piezoelectric Ceramics (Academic Press, London, 1971)

    Google Scholar 

  11. B. Noheda, D.E. Cox, G. Shirane, J.A. Gonzalo, L.E. Cross, S.E. Park, Appl. Phys. Lett. 74, 2059 (1999)

    Article  Google Scholar 

  12. R. Guo, L.E. Cross, S.E. Park, B. Noheda, D.E. Cox, G. Shirane, Phys. Rev. Lett. 84, 5423 (2000)

    Article  Google Scholar 

  13. R.E. Eitel, C.A. Randall, T.R. Shrout, P.W. Rehrig, W. Hackenberger, S.E. Park, Jpn. J. Appl. Phys. 40, 5999 (2001)

    Article  Google Scholar 

  14. I. Sterianou, D.C. Sinclair, I.M. Reaney, T.P. Comyn, A.J. Bell, J. Appl. Phys. 106, 084107 (2009)

    Article  Google Scholar 

  15. S. Wada, K. Yamato, P. Pulpan, N. Kumada, B.Y. Lee, T. Iijima, C. Moriyoshi, Y. Kuroiwa, J. Appl. Phys. 108, 094114 (2010)

    Article  Google Scholar 

  16. M.M. Kumar, A. Srinivas, S.V. Suryanarayana, J. Appl. Phys. 87, 855 (2000)

    Article  Google Scholar 

  17. Y.X. Wei, X.T. Wang, J.T. Zhu, X.L. Wang, J.J. Jia, J. Am. Ceram. Soc. 96, 3163 (2013)

    Google Scholar 

  18. J. Yu, J. Chu, Chi. Sci. Bull. 53, 2097 (2008)

    Article  Google Scholar 

  19. T. Rojac, A. Bencan, B. Malic, G. Tutuncu, J.L. Jones, J.E. Daniels, D. Damjanovic, J. Am. Ceram. Soc. 97, 1993 (2014)

    Article  Google Scholar 

  20. S.O. Leontsev, R.E. Eitel, J. Am. Ceram. Soc. 92, 2957 (2009)

    Article  Google Scholar 

  21. S.C. Yang, A. Kumar, V. Petkov, S. Priya, J. Appl. Phys. 113, 144101 (2013)

    Article  Google Scholar 

  22. X.B. Hou, J. Yu, J. Am. Ceram. Soc. 96, 2218 (2013)

    Article  Google Scholar 

  23. L.L. Zhang, J. Yu, M. Itoh, J. Appl. Phys. 115, 123523 (2014)

    Article  Google Scholar 

  24. Q.J. Zheng, Y.Q. Guo, F.Y. Lei, X.C. Wu, D.M. Lin, J. Mater. Sci. Mater. Electron. 25, 2638 (2014)

    Article  Google Scholar 

  25. X. Shan, C.R. Zhou, Z.Y. Cen, H.B. Yang, Q. Zhou, W.Z. Li, Ceram. Int. 39, 6707 (2013)

    Article  Google Scholar 

  26. I. Fujii, R. Mitsui, K. Nakashima, N. Kumada, M. Shimada, T. Watanabe, J. Hayashi, H. Yabuta, M. Kubota, T. Fukui, S. Wada, Jpn. J. Appl. Phys. 50, 09ND07 (2011)

    Article  Google Scholar 

  27. Y. Lin, J. Yu, J. Mater. Sci. Mater. Electron. 25, 5462 (2014)

    Article  Google Scholar 

  28. J. Yu, J.H. Chu, in Encyclopedia of Nanoscience and Nanotechnology, vol. 17, ed. by H.S. Nalwa (American Scientific Publishers, Valencia, 2011), pp. 27–64

    Google Scholar 

  29. H.I. Hsiang, F.S. Yen, J. Am. Ceram. Soc. 79, 1053 (1996)

    Article  Google Scholar 

  30. S.B. Ren, C.J. Lu, J.S. Liu, H.M. Shen, Y.N. Wang, Phys. Rev. B 54, R14337(R) (1996)

    Article  Google Scholar 

  31. C.A. Randall, N.C. Kim, J.P. Kucera, W.W. Cao, T.R. Shrout, J. Am. Ceram. Soc. 81, 677 (1998)

    Article  Google Scholar 

  32. T.M. Kamel, G. de With, J. Euro. Ceram. Soc. 28, 851 (2008)

    Article  Google Scholar 

  33. X.Z. Guo, Y.G. Wu, Y.N. Zou, Z.Y. Wang, J. Mater. Sci. Mater. Electron. 23, 1072 (2012)

    Article  Google Scholar 

  34. N. Triamnak, R. Yimnirun, J. Pokorny, D.P. Cann, J. Am. Ceram. Soc. 96, 3176 (2013)

    Google Scholar 

  35. C.C. Huang, D.P. Cann, J. Appl. Phys. 104, 024117 (2008)

    Article  Google Scholar 

  36. N. Raengthon, D.P. Cann, J. Am. Ceram. Soc. 95, 1604 (2012)

    Article  Google Scholar 

  37. J.H. Cho, T.K. Song, L. Wang, H.G. Yeo, Y.S. Sung, M.H. Kim, D.S. Park, J. Appl. Phys. 105, 061640 (2008)

    Article  Google Scholar 

  38. N.G. Eror, U. Balachandran, J. Solid Stat. Chem. 40, 85 (1981)

    Article  Google Scholar 

  39. L. Wang, Y. Sakka, Y. Shao, G.A. Botton, T. Kolodiazhnyi, J. Am. Ceram. Soc. 93, 2903 (2010)

    Article  Google Scholar 

  40. Z.Y. Shen, Q.G. Hu, Y.M. Li, Z.M. Wang, W.Q. Luo, Y. Hong, Z.X. Xie, R.H. Liao, J. Mater. Sci. Mater. Electron. 24, 3089 (2013)

    Article  Google Scholar 

  41. N.A. Pertsev, Z.G. Zembilgotov, A.K. Tagantsev, Ferroelectrics 223, 79 (1999)

    Article  Google Scholar 

  42. L.L. Zhang, J. Yu, Appl. Phys. Lett. 106, 112907 (2015)

    Article  Google Scholar 

Download references

Acknowledgments

This work was partially supported by FANEDD-200744, NCET-07-0624, Shanghai Eastern Scholarship Program, and the Fundamental Research Funds for the Central Universities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Yu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, Y., Zhang, L., Zheng, W. et al. Structural phase boundary of BiFeO3–Bi(Zn1/2Ti1/2)O3–BaTiO3 lead-free ceramics and their piezoelectric properties. J Mater Sci: Mater Electron 26, 7351–7360 (2015). https://doi.org/10.1007/s10854-015-3364-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-015-3364-x

Keywords

Navigation