Skip to main content
Log in

Influence of annealing temperature and electrical conductivity of α-Fe2O3 nanoparticles for Schottky barrier diode

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The microwave irradiation route is adopted for synthesizing hematite nanoparticles. The occurrence of different stages in iron oxide nanoparticles due to annealing temperature is validated from its phase transition. The temperature variation for annealing process is made subsequently in this experiment in steps of 300 °C, 400 °C, 500 °C, 600 °C, 700 °C, 800 °C and 900 °C. The formation and deformation of α-Fe2O3 (hematite) phase is identified from this work. The morphology, crystallinity and consistency in particles size are estimated from XRD, SEM and TEM image. The decrease in particle size is due to phase transformation which is identified from 78 to 24 nm. The specified involvement of thermal stability is tested from TGA analysis which is confirmed from phase transition in the XRD. Change in bandgap energy and respective blue shift for less particle sizes are elucidated from UV-DRS and PL spectra. The elemental presence Fe 2p and O 1s spectra indicates the valence states of Fe3+ and O2− from XPS and the VSM results are confirmed according to the increase in saturation and decrease in coercivity tended towards soft magnetic behaviour due to phase transition. The DC electrical conductivity and activation energy are calculated from I–V studies. The Schottky barrier diode parameters of ideality factor (n), barrier height (Φb) and reverse saturation current (I0) is calculated for both dark and light conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. X. Liu, W. Si, J. Zhang, X. Sun, J. Deng, S. Baunack, O.G. Schmidt, Free-standing Fe2O3 nanomembranes enabling ultra-long cycling life and high rate capability for Li-ion batteries. Sci. Rep. 4(1), 7452 (2015). https://doi.org/10.1038/srep07452

    Article  CAS  Google Scholar 

  2. P. Sangaiya, R. Jayaprakash, A review on iron oxide nanoparticles and their biomedical applications. J. Supercond. Novel Magn. 31(11), 3397–3413 (2018). https://doi.org/10.1007/s10948-018-4841-2

    Article  CAS  Google Scholar 

  3. R.M. Cornell, U. Schwertmann, The Iron Oxides Structure Properties, Reactions, Occurrence and Uses (VCH, Weinheim, 1996)

    Google Scholar 

  4. D. Shi, M.E. Sadat, A.W. Dunn, D.B. Mast, Photo-fluorescent and magnetic properties of iron oxide nanoparticles for biomedical applications. Nanoscale (2015). https://doi.org/10.1039/c5nr01538c

    Article  Google Scholar 

  5. I. Kazeminezhad, S. Mosivand, Phase transition of electrooxidized Fe3O4 to γ and α- Fe2O3 nanoparticles using sintering treatment. Acta Phys. Pol. A 125(5), 1210–1214 (2014). https://doi.org/10.12693/APhysPolA.125.1210

    Article  CAS  Google Scholar 

  6. G.F. Goya, T.S. Berquó, F.C. Fonseca, M.P. Morales, Static and dynamic magnetic properties of spherical magnetite nanoparticles. J. Appl. Phys. 94(5), 3520–3528 (2003). https://doi.org/10.1063/1.1599959

    Article  CAS  Google Scholar 

  7. M.R. Housaindokht, A. Nakhaei Pour, Study the effect of HLB of surfactant on particle size distribution of hematite nanoparticles prepared via the reverse microemulsion. Solid State Sci. 14(5), 622–625 (2012). https://doi.org/10.1016/j.solidstatesciences.2012.01.016

    Article  CAS  Google Scholar 

  8. C.Y. Yin, M. Minakshi, D.E. Ralph, Z.T. Jiang, Z. Xie, H. Guo, Hydrothermal synthesis of cubic α-Fe2O3 microparticles using glycine: surface characterization, reaction mechanism and electrochemical activity. J. Alloys Compd. 509(41), 9821–9825 (2011). https://doi.org/10.1016/j.jallcom.2011.08.048

    Article  CAS  Google Scholar 

  9. M. Nazari, N. Ghasemi, H. Maddah, M.M. Motlagh, Synthesis and characterization of maghemite nanopowders by chemical precipitation method. J. Nanostruct. Chem. 4(2), 99 (2014). https://doi.org/10.1007/s40097-014-0099-9

    Article  Google Scholar 

  10. A. Bumajdad, S. Ali, A. Mathew, Characterization of iron hydroxide/oxide nanoparticles prepared in microemulsions stabilized with cationic/non-ionic surfactant mixtures. J. Colloid Interface Sci. 355(2), 282–292 (2011). https://doi.org/10.1016/j.jcis.2010.12.022

    Article  CAS  Google Scholar 

  11. C. Xu, Y. Wang, H. Chen, D. Nie, Y. Liu, PVP-assisted synthesis of flower-like hematite microstructures composed of porous nanosheets. J. Mater. Sci. 26(5), 2982–2986 (2015). https://doi.org/10.1007/s10854-015-2786-9

    Article  CAS  Google Scholar 

  12. C. Wang, Y. Cui, K. Tang, One-pot synthesis of α- Fe2O3 nanospheres by solvothermal method. Nanoscale Res. Lett. 8(1), 213 (2013). https://doi.org/10.1186/1556-276X-8-213

    Article  CAS  Google Scholar 

  13. E. Darezereshki, One-step synthesis of hematite (α-Fe2O3) nano-particles by direct thermal-decomposition of maghemite. Mater. Lett. 65(4), 642–645 (2011). https://doi.org/10.1016/j.matlet.2010.11.030

    Article  CAS  Google Scholar 

  14. K. Rajendran, S. Sen, Optimization of process parameters for the rapid biosynthesis of hematite nanoparticles. J. Photochem. Photobiol. B 159, 82–87 (2016). https://doi.org/10.1016/j.jphotobiol.2016.03.023

    Article  CAS  Google Scholar 

  15. S. Arun, Prasad, iron oxide nanoparticles synthesized by controlled bio-precipitation using leaf extract of Garlic Vine (Mansoa alliacea). Mater. Sci. Semicond. Process. 53, 79–83 (2016)

    Article  Google Scholar 

  16. M. Tadic, M. Panjan, V. Damnjanovic, I. Milosevic, Magnetic properties of hematite (α-Fe2O3) nanoparticles prepared by hydrothermal synthesis method. Appl. Surf. Sci. 320, 183–187 (2014). https://doi.org/10.1016/j.apsusc.2014.08.193`

    Article  CAS  Google Scholar 

  17. P. Sangaiya, R. Jayaprakash, Tuning effect of Sn doping on structural, morphological, optical, electrical and photocatalytic properties of iron oxide nanoparticles. Mater. Sci. Semicond. Process. 85, 40–51 (2018). https://doi.org/10.1016/j.mssp.2018.05.033

    Article  CAS  Google Scholar 

  18. S.F. Hasany, A. Rehman, R. Jose, I. Ahmed, Iron oxide magnetic nanoparticles: a short review. AIP Conf. Proc. 1502(1), 298–321 (2012). https://doi.org/10.1063/1.4769153

    Article  CAS  Google Scholar 

  19. H. Fu, X. Quan, Complexes of fulvic acid on the surface of hematite, goethite, and akaganeite: FTIR observation. Chemosphere 63(3), 403–410 (2006). https://doi.org/10.1016/j.chemosphere.2005.08.054

    Article  CAS  Google Scholar 

  20. M.F. Al-Kuhaili, M. Saleem, S.M.A. Durrani, Optical properties of iron oxide (α-Fe2O3)thin films deposited by the reactive evaporation of iron. J. Alloys Compd. 521, 178 (2012)

    Article  CAS  Google Scholar 

  21. E.L. Miller, D.L. Paluselli, B. Marsen, R.E. Rocheleau, Low-temperature reactively sputtered iron oxide for thin film devices. Thin Solid Films 466, 307–313 (2004)

    Article  CAS  Google Scholar 

  22. P. Brahma, S. Dutta, M. Pal, D. Chakravorty, Magnetic and transport properties of nanostructured ferric oxide produced by mechanical attrition. J. Appl. Phys. 100, 0443021–443026 (2006)

    Article  Google Scholar 

  23. P.P. Sarangi, B. Naik, N.N. Ghosh, Low temperature synthesis of single-phase α-Fe2O3 nano-powders by using simple but novel chemical methods. Powder Technol. 192(3), 245–249 (2009). https://doi.org/10.1016/j.powtec.2009.01.002

    Article  CAS  Google Scholar 

  24. A. Kebede, A.K. Singh, P.K. Rai, N.K. Giri, A.K. Rai, G. Watal, A.V. Gholap, Controlled synthesis, characterization, and application of iron oxide nanoparticles for oral delivery of insulin. Lasers Med. Sci. 28(2), 579–587 (2013). https://doi.org/10.1007/s10103-012-1106-3

    Article  Google Scholar 

  25. G. Haiying, J. Tifeng, Z. Qingrui, L. Adan, G. Faming, Preparation, characterization and photocatalytic property of cubic α-Fe2O3 nanoparticles. Rare Met. Mater. Eng. 44(11), 2688–2691 (2015). https://doi.org/10.1016/S1875-5372(16)60019-X

    Article  Google Scholar 

  26. E. Ranjith Kumar, R. Jayaprakash, M.S. Seehra, T. Prakash, S. Kumar, Effect of α-Fe2O3phase on structural, magnetic and dielectric properties of Mn-Zn ferrite nanoparticles. J. Phys. Chem. Solids 74(7), 943–949 (2013). https://doi.org/10.1016/j.jpcs.2013.02.013

    Article  CAS  Google Scholar 

  27. M.I. Dar, S.A. Shivashankar, Single crystalline magnetite, maghemite, and hematite nanoparticles with rich coercivity. RSC Adv. 4(8), 4105–4113 (2014). https://doi.org/10.1039/c3ra45457f

    Article  CAS  Google Scholar 

  28. J. Hua, J. Gengsheng, Hydrothermal synthesis and characterization of monodisperse α-Fe2O3 nanoparticles. Mater. Lett. 63(30), 2725–2727 (2009). https://doi.org/10.1016/j.matlet.2009.09.054

    Article  CAS  Google Scholar 

  29. S. Giri, S. Samanta, S. Maji, S. Ganguli, A. Bhaumik, Magnetic properties of α-Fe2O3nanoparticle synthesized by a new hydrothermal method. J. Magn. Magn. Mater. 285(1–2), 296–302 (2005). https://doi.org/10.1016/j.jmmm.2004.08.007

    Article  CAS  Google Scholar 

  30. N. Dharmarasu, S. Arulkumaran, R.R. Sumathi, P. Jayavel, J. Kumar, P. Magudapathy, K.G.M. Nair, Low energy proton irradiation induced interface defects on Pd/nGaAs Schottky diodes and its characteristics. Nucl. Instrum. Methods Phys. Res. B 140, 119–123 (1998)

    Article  CAS  Google Scholar 

  31. V. Balouria, A. Kumar, A. Singh, S. Samanta, A.K. Debnath, A. Mahajan, R.K. Bedi, D.K. Aswal, S.K. Gupta, J.V. Yakhmi, Nano-crystalline Fe2O3 thin films for ppm level detection of H2S. Sens. Actuators B 181, 471–478 (2013). https://doi.org/10.1016/j.snb.2013.02.013

    Article  CAS  Google Scholar 

  32. A. Mirzaei, K. Janghorban, B. Hashemi, M. Bonyani, S.G. Leonardi, G. Neri, Highly stable and selective ethanol sensor based on α-Fe2O3nanoparticles prepared by Pechini sol-gel method. Ceram. Int. (2015). https://doi.org/10.1016/j.ceramint.2015.12.176

    Article  Google Scholar 

  33. M. Balaji, J. Chandrasekaran, M. Raja, S. Rajesh, Structural, optical and electrical properties of Ru doped MoO3 thin films and its P-N diode application by JNS pyrolysis technique. J. Mater. Sci. 27(11), 11646–11658 (2016). https://doi.org/10.1007/s10854-016-5300-0

    Article  CAS  Google Scholar 

  34. Z. Çaldıran, A.R. Deniz, Y. Şahin, Ö. Metin, K. Meral, Ş. Aydoğan, The electrical characteristics of the Fe3O4/Si junctions. J. Alloys Compd. 552, 437–442 (2013)

    Article  Google Scholar 

  35. A.R. Deniz, Z. Çaldıran, Ö. Metin, K. Meral, Ş. Aydoğan, The investigation of the electrical properties of Fe3O4/n-Si heterojunctions in a wide temperature range. J. Colloid Interface Sci. 473, 172–181 (2016)

    Article  CAS  Google Scholar 

  36. N.A.M. Barakat, Synthesis and characterization of maghemite iron oxide (γ-Fe2O3) nanofibers: novel semiconductor with magnetic feature. J. Mater. Sci. 47, 6237–6245 (2012). https://doi.org/10.1007/s10853-012-6543-7

    Article  CAS  Google Scholar 

  37. M. Raja, J. Chandrasekaran, M. Balaji, B. Janarthanan, Impact of annealing treatment on structural and dc electrical properties of spin coated tungsten trioxide thin films for Si/WO3/Ag junction diode. Mater. Sci. Semicond. Process. 56, 145–154 (2016). https://doi.org/10.1016/j.mssp.2016.08.007

    Article  CAS  Google Scholar 

  38. N. Hamdaoui, R. Ajjel, B. Salem, M. Gendry, Distribution of barrier heights in metal/n-InAlAs Schottky diodes from current–voltage–temperature measurements. Mater. Sci. Semicond. Process. 26, 431–437 (2014)

    Article  CAS  Google Scholar 

  39. R. Suresh, V. Ponnuswamy, C. Sankar, M. Manickama, R. Mariappan, IDC golf-ball structured thin films: preparation, characterization and photodiode properties. RSC Adv. 6, 53967 (2016)

    Article  CAS  Google Scholar 

  40. R.K. Gupta, F. Yakuphanoglu, photoconductive Schottky diode based on Al/p-Si/SnS2/Ag for optical sensor application. Sol. Energy 86, 1539–1545 (2012)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Sangaiya.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sangaiya, P., Jayaprakash, R. Influence of annealing temperature and electrical conductivity of α-Fe2O3 nanoparticles for Schottky barrier diode. J Mater Sci: Mater Electron 31, 15153–15174 (2020). https://doi.org/10.1007/s10854-020-04080-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-04080-5

Navigation