Skip to main content
Log in

Development of sustainable polybenzoxazine-based organic–inorganic hybrid nanocomposites for high voltage insulator applications

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The benzoxazines made from cardanol-aniline (C-a), bisphenol-A-aniline (BA-a), and bisphenol-F-aniline (BF-a) were separately reacting with paraformaldehyde through Mannich condensation reaction. Hybrid polymeric blends of binary and ternary compositions were developed using DGEBA, C-a and BA-a/BF-a matrices. Bio-silica was obtained from rice-husk, which was functionalized using glycidoxypropyltrimethoxysilane, reinforced with combinations of binary and ternary blends of epoxy/benzoxazine resins, and then cured with triethylenetetramine (teta). From thermogravimetric analysis, it was inferred that 100 wt% of bio-silica reinforced hybrid poly(C-a/BA-a/DGEBA) and poly(C-a/BF-a/DGEBA) composite samples possess better thermal stability than that of neat matrices. Among the composites, silica reinforced composites possess a lower dielectric constant than that of other composites. The value of break down voltage of 100 wt% of bio-silica reinforced polymer composites namely, poly(DGEBA-teta), poly(C-a 50wt%/DGEBA 50 wt%), poly(C-a/BA-a/DGEBA) and poly(C-a/BF-a/DGEBA) were observed at 25.93, 31.44, 31.74 and 32.30 kV, respectively. According to the data obtained from different experimental studies, hybrid composites made of epoxy resin and benzoxazine with bio-silica reinforcement possess better performance characteristics and can be considered a better suited material for high voltage insulation applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. J.R. Aguero, E. Takayesu, D. Novosel, R. Masiello, IEEE Power Energy Mag. 15, 74 (2017)

    Article  Google Scholar 

  2. S.M. Gubanski, IEEE Electr. Insul. Mag. 21, 5 (2005)

    Article  Google Scholar 

  3. I. Pleşa, P.V. Noţingher, S. Schlögl, C. Sumereder, M. Muhr, Polymers (Basel) 8, 173 (2016)

    Article  Google Scholar 

  4. T. Tanaka, G.C. Montanari, R. Mülhaupt, IEEE Trans. Dielectr. Electr. Insul. 11, 763 (2004)

    Article  CAS  Google Scholar 

  5. Z. Han, R. Garrett, Tech. Proc. 2009 NSTI Nanotechnol. Conf. Expo, NSTI-Nanotech 2009 2, 499 (2009)

  6. H. Fischer, Mater. Sci. Eng. C 23, 763 (2003)

    Article  Google Scholar 

  7. N. Andraschek, A.J. Wanner, C. Ebner, G. Riess, Polymers (Basel) 8, 201 (2016)

    Article  Google Scholar 

  8. X. Huang, Y. Li, F. Liu, P. Jiang, T. Iizuka, K. Tatsumi, T. Tanaka, IEEE Trans. Dielectr. Electr. Insul. 21, 1516 (2014)

    Article  CAS  Google Scholar 

  9. P. Liu, H. Feng, H. Zhang, X. Ning, D. Li, Z. Peng, IEEE Trans. Dielectr. Electr. Insul. 23, 2385 (2016)

    Article  Google Scholar 

  10. T. Imai, F. Sawa, T. Nakano, T. Ozaki, T. Shimizu, M. Kozako, T. Tanaka, IEEE Trans. Dielectr. Electr. Insul. 13, 319 (2006)

    Article  CAS  Google Scholar 

  11. S. Kumara, M. Fernando, IEEE Electr. Insul. Mag. 36, 26 (2020)

    Article  Google Scholar 

  12. Y. Hu, K. Liu, Transmission Lines Detection Technology (Elsevier, Amsterdam, 2017)

    Book  Google Scholar 

  13. R. Taherian, Application of Polymer-Based Composites: Polymer-Based Composite Insulators (Elsevier Inc., Amsterdam, 2018)

    Google Scholar 

  14. D.C. Discharge, C. Of, A.I.R. Gaps, External Insulation Characteristics of UHVDC Lines (2018)

  15. M. Selvi, P. Prabunathan, M. Kumar, M. Alagar, Int. J. Polym. Mater. Polym. Biomater. 63, 651 (2014)

    Article  CAS  Google Scholar 

  16. C.K. Chozhan, A. Chandramohan, M. Alagar, High Perform. Polym. 25, 1007 (2013)

    Article  Google Scholar 

  17. T. Chen, X. Wang, C. Peng, G. Chen, C. Yuan, Y. Xu, B. Zeng, W. Luo, K. Balaji, D.F.S. Petri, L. Dai, Macromol. Mater. Eng. 305, 1 (2020)

    Google Scholar 

  18. P. Thirukumaran, A. Shakila, S. Muthusamy, RSC Adv. 4, 7959 (2014)

    Article  CAS  Google Scholar 

  19. H. Ishida, Overview and Historical Background of Polybenzoxazine Research (Elsevier, Amsterdam, 2011)

    Book  Google Scholar 

  20. Q. Liu, X. Zhou, X. Fan, C. Zhu, X. Yao, Z. Liu, Polym. - Plast. Technol. Eng. 51, 251 (2012)

    Article  CAS  Google Scholar 

  21. K. Krishnamoorthy, D. Subramani, N. Eeda, A. Muthukaruppan, Polym. Adv. Technol. 30, 1856 (2019)

    Article  CAS  Google Scholar 

  22. Z. Feng, M. Zeng, D. Meng, J. Chen, W. Zhu, Q. Xu, J. Wang, J. Mater. Sci. Mater. Electron. 31, 4364 (2020)

    Article  CAS  Google Scholar 

  23. S.H. Lee, K.S. Kim, J.H. Shim, C.H. Ahn, Macromol. Res. 26, 388 (2018)

    Article  CAS  Google Scholar 

  24. B. Kiskan, N.N. Ghosh, Y. Yagci, Polym. Int. 60, 167 (2011)

    Article  CAS  Google Scholar 

  25. S.K.M. Haque, J.A. Ardila-Rey, Y. Umar, A.A. Masud, F. Muhammad-Sukki, B.H. Jume, H. Rahman, N.A. Bani, Energies 14, 1 (2021)

    Article  Google Scholar 

  26. J. Chen, M. Zeng, Z. Feng, T. Pang, Y. Huang, Q. Xu, ACS Appl. Polym. Mater. 1, 625 (2019)

    Article  CAS  Google Scholar 

  27. M.R. Vengatesan, S. Devaraju, K. Dinakaran, M. Alagar, J. Mater. Chem. 22, 7559 (2012)

    Article  CAS  Google Scholar 

  28. G. Latha, A. Hariharan, P. Prabunathan, M. Alagar, J. Polym. Environ. 28, 918 (2020)

    Article  CAS  Google Scholar 

  29. T. Lakshmikandhan, A. Hariharan, K. Sethuraman, M. Alagar, J. Coat. Technol. Res. 16, 1737 (2019)

    Article  CAS  Google Scholar 

  30. J. Ding, Y. Huang, T. Han, Iran. Polym. J. English Ed. 25, 69 (2016)

    Article  CAS  Google Scholar 

  31. V. Saravanan Veera Sena, H. Arumugam, K. Mohamed Mydeen, B. Krishnasamy, M. Mohamed Iqbal, A. Muthukaruppan, Polym. Adv. Technol. (2022) https://doi.org/10.1002/pat.5907.

  32. H. Arumugam, S. Krishnan, M. Chavali, A. Muthukaruppan, New J. Chem. 42, 4067 (2018)

    Article  CAS  Google Scholar 

  33. A. Hariharan, M. Kesava, M. Alagar, K. Dinakaran, K. Subramanian, Polym. Adv. Technol. 29, 355 (2018)

    Article  CAS  Google Scholar 

  34. D.W. Van Krevelen, Cohesive Properties and Solubility (Elsevier, Amsterdam, 1997)

    Book  Google Scholar 

  35. D.W. van Krevelen, Polymers 16, 615 (1975)

    Article  Google Scholar 

  36. E.M. Pearce, J. Polym. Sci. Part C Polym. Lett. 28, 32 (2005)

    Article  Google Scholar 

  37. A. Muthusamy, K. Balaji, S.C. Murugavel, C. Yuan, L. Dai, Polym. Sci. Ser. B 62, 245 (2020)

    Article  CAS  Google Scholar 

  38. A. Hariharan, P. Prabunathan, S.S. Subramanian, M. Kumaravel, M. Alagar, J. Polym. Environ. 28, 598 (2020)

    Article  CAS  Google Scholar 

  39. D. Aishwarya, K. Balaji, A. Hariharan, Polym. Sci. Ser. B 63, 727 (2021)

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the PSG Management, Secretary, and Principal, PSG Institute of Technology and Applied Research, Neelambur, Coimbatore, India, for their moral and financial support.

Funding

No funds, grants, or other support was received.

Author information

Authors and Affiliations

Authors

Contributions

MMI, SA: Synthesis, Methodology, Characterization, Investigation. HA: Writing—original draft, Conceptualization, Methodology, Characterization, Investigation, Supervision. BK: Methodology, Review and Editing, Project adminisation. RVM, BV: Characterization, Validation. CLV: Methodology, Validation. AM: Resources, Validation, Supervision.

Corresponding authors

Correspondence to Hariharan Arumugam or Alagar Muthukaruppan.

Ethics declarations

Conflict of interest

There is no conflict of interest by any form for this manuscript.

Ethical approval

Yes this article compliance with ethical standards of journal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iqbal, M.M., Appasamy, S., Krishnasamy, B. et al. Development of sustainable polybenzoxazine-based organic–inorganic hybrid nanocomposites for high voltage insulator applications. J Mater Sci: Mater Electron 34, 603 (2023). https://doi.org/10.1007/s10854-022-09805-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-022-09805-2

Navigation