Skip to main content
Log in

Impact of strip winding tension on ultracrystalline magnetic core for current transformer

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Electronic products are designed towards “miniaturization”, “low energy consumption,“ and “high performance”. This study investigates the impact of winding tension on the ultracrystalline magnetic core with Fe73.2Si14B9Cu0.8Nb3 composition for current transformers from the manufacturing perspective. The winding tension was controlled by controlling the converter frequency and manual force. The research results showed that, as the winding tension increased and the deformation factor λf increased, the outer diameter decreased. In contrast, the core loss, remanence, and coercivity first decreased and then increased, with the amplitude of decrease much higher than that of increase. Seen from manufacturing, under the excitation current of 10–100 mA, the induced potential value increased first and then decreased, with the amplitude change reaching the maximum at 250 mA. When the rated current percentage was 1–20%, the ratio error approached and then deviated from the zero axis, and the phase displacement tended to decrease first and then increase. These results promote new industrial optimization and upgrading of the “research side”, “manufacturing side,“ and “application side”, providing practical guidance for industrial mass production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data availability

The corresponding author’s data supporting this study’s findings are available upon reasonable request.

References

  1. L. Han, F. Maccari, I.R. Souza Filho, N.J. Peter, Y. Wei, B. Gault, O. Gutfleisch, Z. Li, D. Raabe, A mechanically strong and ductile soft magnet with extremely low coercivity. Nature. 608(7922), 310–316 (2022). https://doi.org/10.1038/s41586-022-04935-3

    Article  CAS  Google Scholar 

  2. V. Nguyenthuc, H. Anhtam, D.T.H. Giang, N.H. Duc, N.T. Ngoc, V.T. Ngockhanh, L. Vanlich, V.-H. Dinh, Hierarchical geometric designs for Fe-based amorphous materials with tunable soft magnetic properties. J. Alloys Compd. 895, 162628 (2022). https://doi.org/10.1016/j.jallcom.2021.162628

    Article  CAS  Google Scholar 

  3. J.M. Silveyra, E. Ferrara, D.L. Huber, T.C. Monson, Soft magnetic materials for a sustainable and electrified world. Science 362(6413), eaao0195 (2018). https://doi.org/10.1126/science.aao0195

    Article  CAS  Google Scholar 

  4. T. Yang, Y.L. Zhao, W.P. Li, C.Y. Yu, J.H. Luan, D.Y. Lin, L. Fan, Z.B. Jiao, W.H. Liu, X.J. Liu et al., Ultrahigh-strength and ductile superlattice alloys with nanoscale disordered interfaces. Science 369(6502), 427–432 (2020). https://doi.org/10.1126/science.abb6830

    Article  CAS  Google Scholar 

  5. M.M. Raja, K. Chattopadhyay, B. Majumdar, A. Narayanasamy, Structure and soft magnetic properties of finemet alloys. J. Alloys Compd. 297(1–2), 199–205 (2000). https://doi.org/10.1016/S0925-8388(99)00565-4

    Article  CAS  Google Scholar 

  6. J. Zhou, J. You, K. Qiu, Advances in Fe-based amorphous/nanocrystalline alloys. J. Appl. Phys. 132(4), 040702 (2022). https://doi.org/10.1063/5.0092662

    Article  CAS  Google Scholar 

  7. F.C. Li, T. Liua, J.Y. Zhang, S. Shuang, Q. Wang, A.D. Wang, J.G. Wang, Y. Yang, Amorphous–nanocrystalline alloys: fabrication, properties, and applications. Mater. Today Adv. 4, 100027 (2019). https://doi.org/10.1016/j.mtadv.2019.100027

    Article  Google Scholar 

  8. R. Madugundo, O. Geoffroy, T. Waeckerle, B. Frincu, S. Kodjikian, S. Rivoirard, Improved soft magnetic properties in nanocrystalline fecunbsib nanophy® cores by intense magnetic field annealing. J. Magn. Magn. Mater. 422, 475–478 (2017). https://doi.org/10.1016/j.jmmm.2016.09.063

    Article  CAS  Google Scholar 

  9. A. Talaat, D.W. Greve, M.V. Suraj, Electromagnetic assisted thermal processing of amorphous and nanocrystalline soft magnetic alloys: fundamentals and advances. J. Alloys Compd 854, 156480 (2021). https://doi.org/10.1016/j.jallcom.2020

    Article  CAS  Google Scholar 

  10. P. Tiberto, V. Basso, C. Beatrice, G. Bertotti, Hysteresis properties of conventionally annealed and joule-heated nanocrystalline Fe73.5Cu1Nb3Si13.5B9 alloys. J. Magn. Magn. Mater. 160, 271–272 (1996). https://doi.org/10.1016/0304-8853(96)00194-1

    Article  CAS  Google Scholar 

  11. R. Parsons, K. Onodera, H. Kishimoto, T. Shoji, A. Kato, K. Suzuki, Effect of tensile stress during ultra-rapid annealing on the soft magnetic properties of Fe–B based nanocrystalline alloys. J. Alloys Compd 924, 166374 (2022). https://doi.org/10.1016/j.jallcom.2022.166374

    Article  CAS  Google Scholar 

  12. M. Junglee, D. Soonnoh, E. Kyunglee, Characteristics of large-area porous media burner applicable to direct-fired non-oxidizing annealing furnace. Appl. Therm. Eng. 186, 116489 (2020). https://doi.org/10.1016/j.applthermaleng.2020.116489

    Article  CAS  Google Scholar 

  13. S. Urrehman, C. Wei, Q. Huang, Q. Jiang, A. Ulhaq, Junwang, Zhenchenzhong, Tailoring the microstructure, magnetic properties and interaction mechanisms of alnico-ta alloys by magnetic field treatment. J. Alloys Compd. 857, 157586 (2021). https://doi.org/10.1016/j.jallcom.2020.157586

    Article  CAS  Google Scholar 

  14. L.K. Varga, Tailoring the magnetization linearity of finemet type nanocrystalline cores by stress induced anisotropies. J. Magn. Magn. Mater. (2020). https://doi.org/10.1016/j.jmmm.2019.166327

    Article  Google Scholar 

  15. Z. Xue, X. Li, S. Sohrabi, Y. Ren, W. Wang, Magnetic properties in finemet-type soft magnetic toroidal cores annealed under radial stresses. Metals. 10(1), 122 (2020). https://doi.org/10.3390/met10010122

    Article  CAS  Google Scholar 

  16. Y. Xing, S. Zhou, B. Dong, J. Wang, Winding tension on deformation and dynamic magnetic properties of finemet-type toroidal cores. J. Mater. Sci. Mater. Electron. 33(21), 16818–16827 (2022). https://doi.org/10.1007/s10854-022-08552-8

    Article  CAS  Google Scholar 

  17. G. Bertotti, F. Fiorillo, P. Mazzetti, Basic principles of magnetization processes and origin of losses in soft magnetic materials. J. Magn. Magn. Mater. 112, 146–149 (1992). https://doi.org/10.1016/0304-8853(92)91137-I

    Article  CAS  Google Scholar 

  18. J. Reinert, A. Brockmeyer, R.W. a., A. De Doncker, Calculation of losses in ferro- and ferrimagnetic materials based on the modified steinmetz equation. IEEE Trans. Ind. Appl. 37(4), 1055–1061 (2001). https://doi.org/10.1109/28.936396

    Article  Google Scholar 

  19. Z. Li, K. Yao, D. Li, X. Ni, Z. Lu, Core loss analysis of finemet type nanocrystalline alloy ribbon with different thickness. Prog. Nat. Sci.: Mater. Int. 27(5), 588–592 (2017). https://doi.org/10.1016/j.pnsc.2017.09.002

    Article  CAS  Google Scholar 

  20. S. Flohrer, R. Schafer, J. Mccord, S. Roth, L. Schultz, G. Herzer, Magnetization loss and domain refinement in nanocrystalline tape wound cores. Acta Mater. 54(12), 3253–3259 (2006). https://doi.org/10.1016/j.actamat.2006.03.011

    Article  CAS  Google Scholar 

  21. L.G. Petrescu, M.C. Petrescu, E. Cazacu, C.D. Constantinescu, Estimation of energy losses in nanocrystalline finemet alloys working at high frequency. Materials (2021). https://doi.org/10.3390/ma14247745

    Article  Google Scholar 

  22. M. Ohnuma, K. Hono, T. Yanai, M. Nakano, H. Fukunaga, Y. Yoshizawa, Origin of the magnetic anisotropy induced by stress annealing in fe-based nanocrystalline alloy. Appl. Phys. Lett. 86(15), 152513 (2005). https://doi.org/10.1063/1.1901807

    Article  CAS  Google Scholar 

  23. H. Fukunaga, N. Furukawa, H. Tanaka, M. Nakano, Nanostructured soft magnetic material with low loss and low permeability. J. Appl. Phys. 87(9), 7103–7105 (2000). https://doi.org/10.1063/1.372944

    Article  CAS  Google Scholar 

  24. H. Fukunaga, H. Tanaka, T. Yanai, M. Nakano, K. Takahashi, Y. Yoshizawa, High performance nanostructured cores for chock coils prepared by using creep-induced anisotropy. J. Magn. Magn. Mater. 242(01), 279–281 (2002). https://doi.org/10.1016/S0304-8853(01)01257-4

    Article  Google Scholar 

  25. M. Ohnuma, K. Hono, Direct evidence for structural origin of stress-induced magnetic anisotropy in Fe–Si–B–Nb–Cu nanocrystalline alloys. Appl. Phys. Lett. 83(14), 2859–2861 (2003). https://doi.org/10.1063/1.1615672

    Article  CAS  Google Scholar 

  26. S. Flohrer, R. Schafer, J. Mccord, S. Roth, L. Schultz, F. Fiorillo, W. Gunther, G. Herzer, Dynamic magnetization process of nanocrystalline tape wound cores with transverse field-induced anisotropy. Acta Mater. 54(18), 4693–4698 (2006). https://doi.org/10.1016/j.actamat.2006.04.040

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Basic Scientific research projects of Liaoning Education Department (Grant No. LJKFZ20220323) and the National Key R&D Program of China (Grant No. SQ2020YFF0421850).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation and data collection were performed by MY and MG and data analysis and novelty were directed by PQ and MG. The first draft of the manuscript was written by MY and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Mingxing Yu or Peng Qu.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare that are relevant to the content of this article.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, M., Qu, P. & Gao, M. Impact of strip winding tension on ultracrystalline magnetic core for current transformer. J Mater Sci: Mater Electron 34, 273 (2023). https://doi.org/10.1007/s10854-022-09717-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-022-09717-1

Navigation