Skip to main content
Log in

Winding tension on deformation and dynamic magnetic properties of finemet-type toroidal cores

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The influences of stress introduced by winding tension on the deformation factor (df) and dynamic magnetic properties of Fe73.5Si15.5B7Cu1Nb3 nanocrystalline toroidal cores were systematically investigated. The magnitude of winding tension was adjusted by changing the number of NdFeB disk magnets on the transmission path of the ribbons. The results reveal that df becomes larger with the increase of winding tension, indicating that the shape of toroidal core becomes more difficult back to its initial state. It is found that the core loss P0.3T/100kHz will double when the number of NdFeB magnets increases from 0 to 6, demonstrating that winding tension could increase the core loss significantly. According to the loss analysis, the increment of core loss with winding tension mainly ascribe to the increase of the excess eddy current loss. XRD and TEM results imply that the grain size of annealed toroidal cores is not clearly tuned by winding tension. Through discussions, it is considered that stress-induced anisotropy and dynamic domain motion are the main reasons to the variation of dynamic magnetic properties with winding tension. These results are meaningful in the practical application of nanocrystalline materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. G. Herzer, Modern soft magnets: amorphous and nanocrystalline materials. Acta Mater. 61(3), 718–734 (2013)

    Article  CAS  Google Scholar 

  2. M.E. Mchenry, M.A. Willard, D.E. Laughlin, Amorphous and nanocrystalline materials for applications as soft magnets. Prog. Mater. Sci. 44(4), 291–433 (1999)

    Article  CAS  Google Scholar 

  3. J. Petzold, Advantages of soft magnetic nanocrystalline materials for modern electronic applications. J. Magn. Magn. Mater. 242–245, 84–89 (2002)

    Article  Google Scholar 

  4. J.M. Silveyra, E. Ferrara, D.L. Huber, T.C. Monson, Soft magnetic materials for a sustainable and electrified world. Science (2018). https://doi.org/10.1126/science.aao0195

    Article  Google Scholar 

  5. Y. Yoshizawa, S. Oguma, K. Yamauchi, New Fe-based soft magnetic alloys composed of ultrafine grain structure. J. Appl. Phys. 64(10), 6044–6 (1988)

    Article  CAS  Google Scholar 

  6. M. Haijian, W. Wenqing, B. Wenke, S. Xiangbo, W. Changchun, W. Weimin, Research progress and application prospect of Fe-based nanocrystalline soft magnetic alloys. Rare Metal Mat. Eng. 49(08), 2904–2912 (2020). (In Chinese)

    Google Scholar 

  7. X. Chen, Y. Wang, H. Liu, S. Jin, G. Wu, Interconnected magnetic carbon@NixCo1-xFe2O4 nanospheres with core–shell structure: an efficient and thin electromagnetic wave absorber. J. Colloid Interface Sci. 606, 526–536 (2022)

    Article  CAS  Google Scholar 

  8. D. Lan, Z. Zhao, Z. Gao, K. Kou, H. Wu, Novel magnetic silicate composite for lightweight and efficient electromagnetic wave absorption. J. Mater. Sci. Technol. 92, 51–59 (2021)

    Article  CAS  Google Scholar 

  9. K. Hono, K. Hiraga, Q. Wang, A. Inoue, T. Sakurai, The microstructure evolution of a Fe73.5Si13.5B9Nb3Cu1 nanocrystalline soft magnetic material. Acta Metall. Mater. 40(9), 2137–2147 (1992)

    Article  CAS  Google Scholar 

  10. G. Herzer, Magnetic field-induced anisotropy in nanocrystalline Fe-Cu-Nb-Si-B alloys. Mater. Sci. & Eng. A 181–182(1–3), 876–879 (1994)

    Article  Google Scholar 

  11. O.V. Nielsen, H. Nielsen, Strain- and field-induced magnetic anisotropy in metallic glasses with positive or negative γ s. Solid State Commun. 35(3), 281–284 (1980)

    Article  CAS  Google Scholar 

  12. L. Kraus, K. Závěta, O. Heczko, P. Duhaj, G. Vlasák, J. Schneider, Magnetic anisotropy in as-quenched and stress-annealed amorphous and nanocrystalline Fe73.5Cu1Nb3Si13.5B9 alloys. J. Magnetism Magn. Mater. 112(1–3), 275–277 (1992)

    Article  CAS  Google Scholar 

  13. M.A. Willard, Chapter four-nanocrystalline soft magnetic alloys two decades of progress. Handb. Magn. Mater. 21, 173–342 (2013)

    Article  CAS  Google Scholar 

  14. P. Allia, P. Tiberto, M. Baricco, F. Vinai, Improved ductility of nanocrystalline Fe73.5Nb3Cu1Si13.5B9 obtained by direct current joule heating. Appl. Phys. Lett. 63(20), 2759–2761 (1993)

    Article  CAS  Google Scholar 

  15. L.K. Varga, Tailoring the magnetization linearity of Finemet type nanocrystalline cores by stress induced anisotropies. J. Magn. Magn. Mater. 500, 166327 (2020)

    Article  CAS  Google Scholar 

  16. E. Csizmadia, L.K. Varga, Z. Palánki, F. Zámborszky, Creep or tensile stress induced anisotropy in FINEMET-type ribbons? J. Magn. Magn. Mater. 374, 587–90 (2015)

    Article  CAS  Google Scholar 

  17. T. Yanai, A. Shimada, K. Takahashi, M. Nakano, Y. Yoshizawa, H. Fukunaga, Magnetic properties of Fe-based ribbons and toroidal cores prepared by continuous joule heating under tensile stress. IEEE T. Magn. 42(10), 2781–2783 (2006)

    Article  CAS  Google Scholar 

  18. B. Hofmann, H. Kronmüller, Stress-induced magnetic anisotropy in nanocrystalline FeCuNbSiB. J. Magn. Magn. Mater. 152(1), 91–98 (1996)

    Article  CAS  Google Scholar 

  19. G. Herzer, Creep induced magnetic anisotropy in nanocrystalline Fe-Cu-Nb-Si-B alloys. IEEE T. Magn. 30(6), 4800–4802 (1994)

    Article  CAS  Google Scholar 

  20. Z. Xue, X. Li, S. Sohrabi, Y. Ren, W. Wang, Magnetic properties in finemet-type soft magnetic toroidal cores annealed under radial stresses. Metals 10(1), 122 (2020)

    Article  CAS  Google Scholar 

  21. Y. Han, A. Wang, A. He, C. Chang, F. Li, X. Wang, Improvement of magnetic properties, microstructure and magnetic structure of Fe73.5Cu1Nb3Si15.5B7 nanocrystalline alloys by two-step annealing process. J. Mater. Sci.: Mater. Electron. 27(4), 3736–3741 (2016)

    CAS  Google Scholar 

  22. T.H. Noh, W.K. Pi, I.K. Kang, Effects of two-step annealing on the magnetic properties of Fe-Cu-Mo-Si-B nanocrystalline alloy. J. Magn. Magn. Mater. 128(1–2), 129–132 (1993)

    Article  CAS  Google Scholar 

  23. Z. Li, K. Yao, D. Li, X. Ni, Z. Lu, Core loss analysis of finemet type nanocrystalline alloy ribbon with different thickness. Prog. Nat. Sci.: Mater. Int. 27(5), 588–592 (2017)

    Article  CAS  Google Scholar 

  24. Y. Yoshizawa, K. Yamauchi, Induced magnetic anisotropy and thickness dependence of magnetic properties in nanocrystalline alloy finemet. IEEE Transl. J. Magn. Jpn 14(11), 1070–1076 (1990)

    Article  Google Scholar 

  25. G. Bertotti, F. Fiorillo, P. Mazzetti, Basic principles of magnetization processes and origin of losses in soft magnetic materials. J. Magn. Magn. Mater. 112(1–3), 146–149 (1992)

    Article  CAS  Google Scholar 

  26. G. Bertotti, F. Fiorillo, G. Soardo, Dependence of power losses on peak magnetization and magnetization frequency in grain-oriented and non-oriented 3% SiFe. IEEE T. Magn. 23(5), 3520–3522 (1987)

    Article  Google Scholar 

  27. G. Bertotti, Hysteresis in magnetism, in Maxwell’s Equations in Magnetic Media. (Elsevier, Amsterdam, 1998), pp. 73–102

    Google Scholar 

  28. K.J. Overshott, The causes of the anomalous loss in amorphous ribbon materials. IEEE T. Magn. 17(6), 2698–2700 (1981)

    Article  Google Scholar 

  29. S. Flohrer, R. Schafer, J. Mccord, S. Roth, L. Schultz, F. Fiorillo, W. Gunther, G. Herzer, Dynamic magnetization process of nanocrystalline tape wound cores with transverse field-induced anisotropy. Acta Mater. 54(18), 4693–4698 (2006)

    Article  CAS  Google Scholar 

  30. E.F. Fuchs, M. Masoum, Magnetic Circuits: Inductors and Permanent Magnets (Springer, US, 2011)

    Google Scholar 

  31. P. Scherrer, Bestimmung der Größe und der inneren Struktur von Kolloidteilchen mittels Röntgenstrahlen. Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse 26, 98–100 (1918)

    Google Scholar 

  32. J.I. Langford, A.J.C. Wilson, Scherrer after sixty years: a survey and some new results in the determination of crystallite size. J. Appl. Crystallogr. 11(7), 102–113 (1978)

    Article  CAS  Google Scholar 

  33. H. Fukunaga, N. Furukawa, H. Tanaka, M. Nakano, Nanostructured soft magnetic material with low loss and low permeability. J. Appl. Phys. 87(9), 7103–7105 (2000)

    Article  CAS  Google Scholar 

  34. S. Flohrer, R. Schafer, J. Mccord, S. Roth, L. Schultz, G. Herzer, Magnetization loss and domain refinement in nanocrystalline tape wound cores. Acta Mater. 54(12), 3253–3259 (2006)

    Article  CAS  Google Scholar 

  35. S. Flohrer, R. Sch Fer, C. Polak, G. Herzer, Interplay of uniform and random anisotropy in nanocrystalline soft magnetic alloys. Acta Mater. 53(10), 2937–2942 (2005)

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (Grant No. 51971093) and the National Key Research and Development Program of China (Grant No. 2021YFB3802900).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation and data collection were performed by YX and JW and data analysis and novelty were directed by SZ and BD. The first draft of the manuscript was written by YX and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Shaoxiong Zhou or Bangshao Dong.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xing, Y., Zhou, S., Dong, B. et al. Winding tension on deformation and dynamic magnetic properties of finemet-type toroidal cores. J Mater Sci: Mater Electron 33, 16818–16827 (2022). https://doi.org/10.1007/s10854-022-08552-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-08552-8

Navigation