Skip to main content

Advertisement

Log in

Extraction of excessively reduced graphene oxide from discarded dry cell batteries by anodic exfoliation method

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The synthesis of graphene materials in both high quality and quantity via economic ways is highly desirable and meaningful for practical applications. In this study, we reported the preparation of reduced graphene oxide (rGO) nanosheets in quantity via the anodic exfoliation of graphite in (NH4)2S2O8 aqueous solution. The proposed electrochemical exfoliation mechanism disclosed that SO4−2 and O2−2 could be intercalated into those graphite sheets, and rGO was obtained by the formation of gaseous SO2 and O2 within graphite sheets. The as-prepared sample is characterized by X-ray diffraction, Scanning electron microscopy Fourier transform infrared spectroscopy, transmission electron microscopy (TEM), Brunauer–Emmett–Teller (BET), cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS) to confirm the formation of rGO. The XRD results indicated that the distance spacing of rGO was longer than that of graphite and the crystal structure of graphite was changed. The results of SEM exposed the random and ultrathin paper-like morphology of the rGO sheets. TEM images of rGO display interconnected sheet-like silky wave with wrinkled and clumped structure. We obtained the highest specific capacitance of 40.19 F/g for rGO at scan rate 50 mV/s. Our work has a bright future for large-scale rGO production intended for electrochemical energy storage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

The raw/processed data required to reproduce these findings are included within the article.

References

  1. M. Taghioskoui, Trends in graphene. Mater. Today 12(10), 34–37 (2009). https://doi.org/10.1016/S1369-7021(09)70274-3

    Article  CAS  Google Scholar 

  2. M.J. Allen, V.C. Tung, R.B. Kaner, Honeycomb carbon: a review of graphene. Chem. Rev. 110, 132–145 (2010)

    Article  CAS  Google Scholar 

  3. D. Cohen-Tanugi, J.C. Grossman, Water desalination across nanoporous graphene. Nano. Lett. 12(7), 3602–3608 (2012)

    Article  CAS  Google Scholar 

  4. C.M. Xin Zhao, C. Hayner, H. Kung, In-plane vacancy‐enabled high‐power Si–graphene composite electrode for lithium‐ion batteries. Adv. Energy Mater. 1(6), 1079 (2011)

    Article  Google Scholar 

  5. W. Hui, K. Sun, F. Tao, J. Dario Stacchiola, H. Yun Hang, 3D Honeycomb-like structured graphene and its high efficiency as a counter-electrode catalyst for dye-sensitized solar cells. Angew. Chem. Int. Ed. 52(35), 9210 (2013)

    Article  Google Scholar 

  6. D. Prasai, J.C. Tuberquia, R. Robert, G. Harl, K. Jennings, I. Kirill, K.L. Bolotin, Graphene: corrosion-inhibiting coating. ACS Nano 6, 1102 (2012)

    Article  CAS  Google Scholar 

  7. W.J. Hyun, O.O. Park, Foldable graphene electronic circuits based on paper substrates. Adv. Mater. 25(34), 4729 (2013)

    Article  CAS  Google Scholar 

  8. Z. Radivojevic et al. (2012) Presented at proceedings of the 2012 virtual reality international conference, Laval, France

  9. A. Bonanni, M. Pumera, Graphene platform for hairpin-DNA-based impedimetric genosensing. ACS Nano 5, 2356 (2011)

    Article  CAS  Google Scholar 

  10. J. Yi, G. Choe, J. Park, J. Young, Graphene oxide-incorporated hydrogels for biomedical applications. Polym. J. (2020). https://doi.org/10.1038/s41428-020-0350-9

    Article  Google Scholar 

  11. M.S.A. Bhuyan, M.N. Uddin, M.M. Islam, F.A. Bipasha, S.S. Hossain, Synthesis of graphene.   Int. Nano Lett. 6(2), 65–83 (2016). https://doi.org/10.1007/s40089-015-0176-1

    Article  CAS  Google Scholar 

  12. H. Saleem, M. Haneef, H.Y. Abbasi, Synthesis route of reduced graphene oxide via thermal reduction of chemically exfoliated graphene oxide. Mater. Chem. Phys. 204, 1–7 (2018). https://doi.org/10.1016/j.matchemphys.2017.10.020

    Article  CAS  Google Scholar 

  13. Y.N. Sudhakar, H. Hemant, S.S. Nitinkumar, P. Poornesh, M. Selvakumar, Green synthesis and electrochemical characterization of rGO–CuO nanocomposites for supercapacitor applications. Ionics (2016). https://doi.org/10.1007/s11581-016-1923-7

    Article  Google Scholar 

  14. D.B. Shinde, J. Brenker, C.D. Easton, R.F. Tabor, A. Neild, Shear assisted electrochemical exfoliation graphite graphene. Langmuir (2016). https://doi.org/10.1021/acs.langmuir.5b04209

    Article  Google Scholar 

  15. D.X. He, W.D. Xue, R. Zhao, 2018 Aqueous solution of ammonium persulfate assisted electrochemical exfoliation of graphite into graphene. 658–662

  16. L. Wu, W. Li, P. Li, S. Liao, S. Qiu, Powder, paper, and foam of few-layer graphene prepared in high yield by electrochemical intercalation exfoliation of expanded graphite. Small 10, 1421–1429 (2013). https://doi.org/10.1002/smll.201302730

    Article  CAS  Google Scholar 

  17. K. Parvez, Z. Wu, R. Li, X. Liu, R. Graf, X. Feng, Exfoliation of graphite into graphene in aqueous solutions of inorganic salts. J. Am. Chem. Soc. (2014). https://doi.org/10.1021/ja5017156

    Article  Google Scholar 

  18. M. Francis, K.L. Alcorn, D.L. Kuntz, C. Druffel, Scott, Warren aqueous intercalation of graphite at a near-neutral pH. ACS Appl. Energy Mater. 1, 5062–5067 (2018)

    Article  Google Scholar 

  19. M. Coros, F. Pogacean, C. Socaci, G. Borodi, L. Magerus, R. Alexandru, Simple and cost-effective synthesis of graphene by electrochemical exfoliation of graphite rods. RSC Adv. 6, 2651 (2016)

    Article  CAS  Google Scholar 

  20. C. Su, A. Lu, Y. Xu, F. Chen, A.N. Khlobystov, L. Li, High-quality thin graphene films from fast electrochemical exfoliation. ACS Nano 5, 2332–2339 (2011)

    Article  CAS  Google Scholar 

  21. A.M. Abdelkader, A.J. Cooper, R.A.W. Dryfe, I.A. Kinloch, How to get between the sheets: a review of recent works on the electrochemical exfoliation of graphene materials from bulk graphite. Nanoscale 7, 6944–6956 (2015). https://doi.org/10.1039/C4NR06942K

    Article  CAS  Google Scholar 

  22. R.M. Tamgadge, A. Shukla, Electrochimica Acta A pH-dependent partial electrochemical exfoliation of highly oriented pyrolytic graphite for high areal capacitance electric double layer capacitor electrode. Electrochim. Acta 325, 134933 (2019). DOI:https://doi.org/10.1016/j.electacta.2019.134933

    Article  CAS  Google Scholar 

  23. K. Chen, D. Xue, Preparation of colloidal graphene in quantity by electrochemical exfoliation. J. Colloid Interface Sci. 436, 41–46 (2014). https://doi.org/10.1016/j.jcis.2014.08.057

    Article  CAS  Google Scholar 

  24. K.S. Rao, J. Senthilnathan, Y. Liu, M. Yoshimura, Role of peroxide ions in formation of graphene nanosheets by electrochemical exfoliation of graphite. Sci. Rep. 4, 1–6 (2014). https://doi.org/10.1038/srep04237

    Article  CAS  Google Scholar 

  25. C.A. Goss, J.C. Brumfield, E.A. Irene, R.W. Murray, Imaging the incipient electrochemical oxidation of highly oriented pyrolytic graphite. Anal. Chem. 65, 1378–1389 (1993)

    Article  CAS  Google Scholar 

  26. I.-M. Low, H.M. Albetran, M. Degiorgio, Structural characterization of commercial graphite and graphene materials. J. Nanotechnol. Nanomater. 1(1), 23–30 (2020)

    Google Scholar 

  27. P.A. Mikhaylov, M.I. Vinogradov, I.S. Levin, G.A. Shandryuk, A.V. Lubenchenko, V.G. Kulichikhin, Synthesis and characterization of polyethylene terephthalate-reduced graphene oxide composites. IOP Conf. Ser.: Mater. Sci. Eng. 693, 012036 (2019). https://doi.org/10.1088/1757-899X/693/1/012036

    Article  CAS  Google Scholar 

  28. S. Thakur, N. Karak, Green reduction of graphene oxide by aqueous phytoextracts. Carbon 50, 5331–5339 (2012)

    Article  CAS  Google Scholar 

  29. D. Li, M.B. Muller, S. Gilje, R.B. Kaner, G.G. Wallace, Processable aqueous dispersions of graphene nanosheets. Nat. Nano 3(2), 101–105 (2008)

    Article  CAS  Google Scholar 

  30. M. Cheng, L.J. Huang, Y.X. Wang, Y.C. Zhao, J.G. Tang, Y. Wang, Y. Zhang, M. Hedayati, M.J. Kipper, S.R. Wickramasinghe, Synthesis of graphene oxide/polyacrylamide composite membranes for organic dyes/water separation in water purification. J. Mater. Sci. 54, 6974 (2019). https://doi.org/10.1007/s10853-018-2828-9

    Article  CAS  Google Scholar 

  31. W. Li, H. Zhang, L. Xia, Fabrication and characterization of ultrafine graphite/carbon foam composites. J. Porous Mater. 22, 565–570 (2015). https://doi.org/10.1007/s10934-015-9926-8

    Article  CAS  Google Scholar 

  32. A. Shalaby, A. Shalaby, D. Nihtianova, P. Markov, A. Staneva, R.S. Iordanova, Y.B. Dimitriev, Structural analysis of reduced graphene oxide by transmission electron microscopy. Bulgarian Chem. Commun. 47, 291–295 (2015)

    Google Scholar 

  33. R. Siburian, H. Sihotang, S.L. Raja, M. Supeno, C. Simanjuntak, New route to synthesize of graphene nanosheets. Orient. J. Chem. (2018). https://doi.org/10.13005/ojc/340120

    Article  Google Scholar 

  34. P. Sreekanth Perumbilavil, T. Sankar, P. Rose, R. Philip, White light Z-scan measurements of ultrafast optical nonlinearity in reduced graphene oxide nanosheets in the 400–700 nm region. Appl. Phys. Lett. 107, 051104 (2015). https://doi.org/10.1063/1.4928124

    Article  CAS  Google Scholar 

  35. J.C. Silva Filho, E.C. Venancio, S.C. Silva, H. Takiishi, L.G. Martinez, R.A. Antunes, 1A thermal method for obtention of 2 to 3 reduced graphene oxide layers from graphene oxide. SN Appl. Sci. 2, 1450 (2020). https://doi.org/10.1007/s42452-020-03241-9

    Article  CAS  Google Scholar 

  36. A. Ramadoss, B. Saravanakumar, S.J. Kim, Thermally reduced graphene oxide-coated fabrics for flexible supercapacitors and self-powered systems. Nano Energy 15, 587 (2015)

    Article  CAS  Google Scholar 

  37. Y. Gonga, D. Lia, B. QiangFua, C. Pan, Influence of graphene microstructures on electrochemical performance for supercapacitors.  Prog. Nat. Sci.:Mater. Int. 25, 379–385 (2015)

    Article  Google Scholar 

  38. N. Vika Marcelina, S. Syakir, Y.W. Wyantuti, R. Hidayat, Characteristic of thermally reduced graphene oxide as supercapacitors electrode materials. IOP Conf. Ser.: Mater. Sci. Eng. 196:012034196(2017)

    Article  Google Scholar 

  39. P.K. Jha, S.K. Singh, V. Kumar, S. Rana, S. Kurungot, N. Ballav, High-level supercapacitive performance of chemically reduced graphene oxide. Chem 3, 846–860 (2017)

    Article  CAS  Google Scholar 

  40. X. Zhang, X. Ge, S.S.Y. Qu, W. Chi, C. Chen, W. Lü, Morphological control of RGO/CdS hydrogel for energy storage. CrystEngComm 18, 1090–1095 (2016)

    Article  CAS  Google Scholar 

  41. Y.N. Sudhakar, H. Hemant, S.S. Nitinkumar, P. Poornesh, M. Selvakumar, Green synthesis and electrochemical characterization of rGO–CuO nanocomposites for supercapacitor applications. Ionics 23, 1267–1276 (2017)

    Article  CAS  Google Scholar 

  42. M. Cristina Tanzi, S. Fare, G. Candiani, Organization, structure, and properties of materials. Found. Biomater. Eng. (2019). https://doi.org/10.1016/B978-0-08-101034-1.00001-3

    Article  Google Scholar 

  43. I.M. Brashem, 2021 Why are graphite electrodes used in electrolysis? https://www.mbrashem.com/why-are-graphite-electrodes-used-in-electrolysis/  (Accessed Oct 07)

Download references

Acknowledgements

This work was financially supported by DST-SERB, New Delhi, with major sponsoring of the project [Grant Number (EEQ/2021/000633)] and The Institute of Science, Dr Homi Bhabha State University, Fort, Mumbai, MH, India.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, methodology, investigation, data curation, and manuscript writing were performed by AK. Formal Analysis, validation, writing—original draft preparation were performed by ALJ. Data collection and formal analysis were performed by AK and ALJ. Writing—review and editing, supervision were performed by JMK and AVK. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Anamika Vitthal Kadam.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, A., Jadhav, A., Khobragade, J.M. et al. Extraction of excessively reduced graphene oxide from discarded dry cell batteries by anodic exfoliation method. J Mater Sci: Mater Electron 34, 62 (2023). https://doi.org/10.1007/s10854-022-09431-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-022-09431-y

Navigation