Skip to main content

Advertisement

Log in

Colloidal chemical synthesis of quaternary semiconductor Cu2FeSnS4 (CFTS) nanoparticles: absorber materials for thin-film photovoltaic applications

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Nanoparticles of the environmentally benign Cu-based quaternary chalcogenide compound Cu2FeSnS4 (CFTS) were successfully synthesized by a low-cost and simple reaction method and the obtained powder (nanoparticles) has been spin coated as a thin film over the FTO substrate. The prepared samples were examined by X-ray diffraction (XRD), Raman analysis, UV–Vis spectroscopy, and Field emission scanning electron microscopy with energy-dispersive spectroscopy (FE-SEM–EDX). The results of the analyses confirm that the obtained nanoparticles are good crystalline nature with tetragonal structure. Morphological images show that the synthesized CFTS nanoparticles are closely packed with slight agglomeration. The UV–Vis absorption spectrum reveals that the nanoparticles have wide absorption ranging in the visible region and optical energy bandgap has been calculated using Tauc’s plot. The calculated energy bandgap is 1.32 eV, which indicates their potential as promising materials for photovoltaic application. The electrochemical properties were investigated by cyclic voltammetry and electrochemical impedance spectroscopy. The fabricated solar cell was electrochemically characterized by current–voltage (IV) measurements under simulated AM 1.5 illumination. In the present study, the CFTS-based solar cell with a structure FTO/ZnO/CdS/CFTS has been fabricated, which exhibits the solar power conversion efficiency of 1.32%, and has been reported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

NA.

References

  1. A.C. Lokhande, K.V. Gurav, E. Jo, C.D. Lokhande, J.H. Kim, J. Alloys Compd. 656, 295–310 (2016). https://doi.org/10.1016/j.jallcom.2015.09.232

    Article  CAS  Google Scholar 

  2. C. Nefzi, M. Souli, Y. Cuminal, N. Kamoun-Turki, Superlattices Microstruct. 124, 17–29 (2018). https://doi.org/10.1016/j.spmi.2018.09.033

    Article  CAS  Google Scholar 

  3. R. Saraf, A. Mathur, V. Maheshwari, ACS Appl. Mater. Interfaces 12(22), 25011–25019 (2020). https://doi.org/10.1021/acsami.0c04346

    Article  CAS  Google Scholar 

  4. Z. Su, K. Sun, Z. Han, H. Cui, F. Liu, Y. Lai, J. Li, X. Hao, Y. Liu, M.A. Green, J. Mater. Chem. A 2(2), 500–509 (2014). https://doi.org/10.1039/C3TA13533K

    Article  CAS  Google Scholar 

  5. W.C. Yang, C.K. Miskin, C.J. Hages, E.C. Hanley, C. Handwerker, E.A. Stach, R. Agrawal, Chem. Mater. 26(11), 3530–3534 (2014). https://doi.org/10.1021/cm501111z

    Article  CAS  Google Scholar 

  6. F. Ozel, J. Alloys Compd. 657, 157–162 (2016). https://doi.org/10.1016/j.jallcom.2015.10.087

    Article  CAS  Google Scholar 

  7. P. Nazari, A. Yazdani, Z. Shadrokh, B.A. Nejand, N. Farahani, R. Seifi, J. Phys. Chem. Solids 111, 110–114 (2017). https://doi.org/10.1016/j.jpcs.2017.07.005

    Article  CAS  Google Scholar 

  8. R. Deepika, P. Meena, Mater. Res. Express 6(8), 0850b7 (2019). https://doi.org/10.1088/2053-1591/ab24e9

    Article  CAS  Google Scholar 

  9. K. Mokurala, P. Bhargava, S. Mallick, Mater. Chem. Phys. 147(3), 371–374 (2014). https://doi.org/10.1016/j.matchemphys.2014.06.049

    Article  CAS  Google Scholar 

  10. K. Mokurala, S. Mallick, P. Bhargava, J. Power Sources 305, 134–143 (2016). https://doi.org/10.1016/j.jpowsour.2015.11.081

    Article  CAS  Google Scholar 

  11. S.G. Nilange, N.M. Patil, A.A. Yadav, Physica B 560, 103–110 (2019). https://doi.org/10.1016/j.physb.2019.02.008

    Article  CAS  Google Scholar 

  12. X. Meng, H. Deng, L. Sun, P. Yang, J. Chu, Mater. Lett. 161, 427–430 (2015). https://doi.org/10.1016/j.matlet.2015.09.013

    Article  CAS  Google Scholar 

  13. K. Diwate, K. Mohite, M. Shinde, S. Rondiya, A. Pawbake, A. Date, H. Pathan, S. Jadkar, Energy Procedia 110, 180–187 (2017). https://doi.org/10.1016/j.egypro.2017.03.125

    Article  CAS  Google Scholar 

  14. J. Zhou, Z. Ye, Y. Wang, Q. Yi, J. Wen, Mater. Lett. 140, 119–122 (2015). https://doi.org/10.1016/j.matlet.2014.11.004

    Article  CAS  Google Scholar 

  15. H. Guan, Y. Shi, B. Jiao, X. Wang, F. Yu, Chalcogenide Lett. 11, 9–12 (2014)

    CAS  Google Scholar 

  16. P. Prabeesh, I.P. Selvam, S.N. Potty, Thin Solid Films 606, 94–98 (2016). https://doi.org/10.1016/j.tsf.2016.03.037

    Article  CAS  Google Scholar 

  17. S. Wang, R. Ma, C. Wang, S. Li, H. Wang, Appl. Surf. Sci. 422, 39–45 (2017). https://doi.org/10.1016/j.apsusc.2017.05.244

    Article  CAS  Google Scholar 

  18. B. Ananthoju, J. Mohapatra, D. Bahadur, N.V. Medhekar, M. Aslam, Sol. Energy Mater. Sol. Cells 189, 125–132 (2019). https://doi.org/10.1016/j.solmat.2018.09.028

    Article  CAS  Google Scholar 

  19. J. Zhou, S. Yu, X. Guo, L. Wu, H. Li, Curr. Appl. Phys. 19(2), 67–71 (2019). https://doi.org/10.1016/j.cap.2018.10.014

    Article  Google Scholar 

  20. H. Guan, H. Shen, B. Jiao, X. Wang, Mater. Sci. Semicond. Process. 25, 159–162 (2014). https://doi.org/10.1016/j.mssp.2013.10.021

    Article  CAS  Google Scholar 

  21. G. Chen, J. Li, S. Chen, Z. Huang, M. Wu, J. Zhao, W. Wang, H. Lin, C. Zhu, Mater. Chem. Phys. 188, 95–99 (2017). https://doi.org/10.1016/j.matchemphys.2016.12.024

    Article  CAS  Google Scholar 

  22. G. El Fidha, N. Bitri, S. Mahjoubi, M. Abaab, I. Ly, Mater. Lett. 215, 62–64 (2018). https://doi.org/10.1016/j.matlet.2017.12.063

    Article  CAS  Google Scholar 

  23. R. Deepika, P. Meena, Mater. Res. Express 7(3), 035012 (2020). https://doi.org/10.1088/2053-1591/ab7c21

    Article  CAS  Google Scholar 

  24. R.R. Prabhakar, N. Huu Loc, M.H. Kumar, P.P. Boix, S. Juan, R.A. John, S.K. Batabyal, L.H. Wong, ACS Appl. Mater. Interfaces 6(20), 17661–17667 (2014). https://doi.org/10.1021/am503888v

    Article  CAS  Google Scholar 

  25. S. Sarkar, P. Howli, U.K. Ghorai, B. Das, M. Samanta, N.S. Das, K.K. Chattopadhyay, CrystEngComm 20(10), 1443–1454 (2018). https://doi.org/10.1039/C7CE02101A

    Article  CAS  Google Scholar 

  26. X. Miao, R. Chen, W. Cheng, Mater. Lett. 193, 183–186 (2017). https://doi.org/10.1016/j.matlet.2017.01.099

    Article  CAS  Google Scholar 

  27. M. Cao, C. Li, B. Zhang, J. Huang, L. Wang, Y. Shen, J. Alloys Compd. 622, 695–702 (2015). https://doi.org/10.1016/j.jallcom.2014.10.164

    Article  CAS  Google Scholar 

  28. M. Mayakkannan, A. Murugan, A. Shameem, V. Siva, S. Sasikumar, S. Thangarasu, S.A. Bahadur, J. Energy Storage 44, 103257 (2021). https://doi.org/10.1016/j.est.2021.103257

    Article  Google Scholar 

  29. W. Wang, H. Shen, H. Yao, J. Li, Mater. Lett. 125, 183–186 (2014). https://doi.org/10.1016/j.matlet.2014.03.166

    Article  CAS  Google Scholar 

  30. M.P. Suryawanshi, S.W. Shin, U.V. Ghorpade, K.V. Gurav, C.W. Hong, P.S. Patil, A.V. Moholkar, J.H. Kim, J. Alloys Compd. 671, 509–516 (2016). https://doi.org/10.1016/j.jallcom.2016.02.015

    Article  CAS  Google Scholar 

  31. S.A. Vanalakar, S.M. Patil, V.L. Patil, S.A. Vhanalkar, P.S. Patil, J.H. Kim, Mater. Sci. Eng. 229, 135–143 (2018). https://doi.org/10.1016/j.mseb.2017.12.034

    Article  CAS  Google Scholar 

  32. N. Akcay, E.P. Zaretskaya, S. Ozcelik, J. Alloys Compd. 772, 782–792 (2019). https://doi.org/10.1016/j.jallcom.2018.09.126

    Article  CAS  Google Scholar 

  33. A. Murugan, V. Siva, A. Samad Shameem, S.A. Bahadur, J. Alloys Compds. 856, 158055 (2021). https://doi.org/10.1016/j.jallcom.2020.158055

    Article  CAS  Google Scholar 

  34. M. Isacfranklin, R. Yuvakkumar, G. Ravi, B. Saravanakumar, M. Pannipara, A.G. Al-Sehemi, D. Velauthapillai, ACS Omega 6(14), 9471–9481 (2021). https://doi.org/10.1021/acsomega.0c06167

    Article  CAS  Google Scholar 

  35. S.P. Madhusudanan, M.S. Kumar, K.Y. Yasoda, D. Santhanagopalan, S.K. Batabyal, J. Mater. Sci. Mater. Electron. 31(1), 752–761 (2020). https://doi.org/10.1007/s10854-019-02582-5

    Article  CAS  Google Scholar 

  36. J.Y. Park, J.H. Noh, T.N. Mandal, S.H. Im, Y. Jun, S.I. Seok, RSC Adv. 3(47), 24918–24921 (2013). https://doi.org/10.1039/C3RA43331E

    Article  CAS  Google Scholar 

  37. A. Ghosh, A. Biswas, R. Thangavel, G. Udayabhanu, RSC Adv. 6(98), 96025–96034 (2016). https://doi.org/10.1039/C6RA15700A

    Article  CAS  Google Scholar 

  38. S. Bharathkumar, M. Sakar, J. Archana, M. Navaneethan, S. Balakumar, Chemosphere 284, 131280 (2021). https://doi.org/10.1016/j.chemosphere.2021.131280

    Article  CAS  Google Scholar 

  39. S. Lu, H. Yang, F. Li, Y. Wang, S. Chen, G. Yang, Y. Liu, X. Zhang, Sci. Rep. 8(1), 1–7 (2018). https://doi.org/10.1038/s41598-018-26770-1

    Article  CAS  Google Scholar 

  40. S. Chen, A. Xu, J. Tao, H. Tao, Y. Shen, L. Zhu, J. Jiang, T. Wang, L. Pan, ACS Sustain. Chem. Eng. 3(11), 2652–2659 (2015). https://doi.org/10.1021/acssuschemeng.5b00585

    Article  CAS  Google Scholar 

  41. C. Dong, W. Meng, J. Qi, M. Wang, Mater. Lett. 189, 104–106 (2017). https://doi.org/10.1016/j.matlet.2016.11.090

    Article  CAS  Google Scholar 

  42. S. Chatterjee, A.J. Pal, Sol. Energy Mater. Sol. Cells 160, 233–240 (2017). https://doi.org/10.1016/j.solmat.2016.10.037

    Article  CAS  Google Scholar 

  43. S. Rondiya, N. Wadnerkar, Y. Jadhav, S. Jadkar, S. Haram, M. Kabir, Chem. Mater. 29(7), 3133–3142 (2017). https://doi.org/10.1021/acs.chemmater.7b00149

    Article  CAS  Google Scholar 

  44. C. Dong, G.Y. Ashebir, J. Qi, J. Chen, Z. Wan, W. Chen, M. Wang, Mater. Lett. 214, 287–289 (2018). https://doi.org/10.1016/j.matlet.2017.12.032

    Article  CAS  Google Scholar 

  45. D. Lee, K. Yong, Nanotechnology 25(6), 065401 (2014). https://doi.org/10.1088/0957-4484/25/6/065401

    Article  CAS  Google Scholar 

  46. A. Tumbul, F. Aslan, A. Göktaş, I.H. Mutlu, J. Alloys Compd. 781, 280–288 (2019). https://doi.org/10.1016/j.jallcom.2018.12.012

    Article  CAS  Google Scholar 

Download references

Funding

The authors declare no competing financial interest.

Author information

Authors and Affiliations

Authors

Contributions

RD contributed to conceptualization, methodology, investigation, writing—original draft, and writing—review & editing. PM contributed to conceptualization, methodology, investigation, writing—original draft, writing—review & editing, and project administration.

Corresponding author

Correspondence to P. Meena.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deepika, R., Meena, P. Colloidal chemical synthesis of quaternary semiconductor Cu2FeSnS4 (CFTS) nanoparticles: absorber materials for thin-film photovoltaic applications. J Mater Sci: Mater Electron 34, 16 (2023). https://doi.org/10.1007/s10854-022-09429-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-022-09429-6

Navigation