Skip to main content
Log in

Synthesis and electrochemical investigation of lithium and cobalt dual-doped spinel LNMO nanomaterial as cathode for aqueous rechargeable lithium-ion battery

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

A dual metal-doped spinel nanomaterial with a nominal stoichiometry of Li1.05Ni0.5Co0.05Mn1.4O4 (LNMCO) was synthesized via a simple sol–gel method. The structural analysis was carried out by X-Ray Diffraction (XRD), Raman and Infrared spectroscopy (IR). The structural analysis reveals that Li1.05Ni0.5Co0.05Mn1.4O4 (LNMCO) nanomaterial exhibits a well-defined Fd-3 m space group. The insertion of Li- and Co-ions alters the atomic configuration and lattice parameter, resulting in expanding the size of unit cells and giving rise to a variation in bond length. Morphological properties of prepared samples were analyzed using field emission scanning electron microscope (FESEM) and high-resolution transmission electron microscope (HRTEM), respectively. Their electrochemical properties were characterized with the help of electrochemical workstation. The galvanostatic charge/discharge was performed at a 0.5 C rate and cyclic voltammetry (CV) in the potential range of 0–1.2 V (vs. Ag/AgCl) at different scan rates. The electrochemical measurement shows that the doping elements Li and Co in spinel LNMO improve the structure stability, rate capacity, and cyclic performance. The first discharge capacity of the doped sample was 112.4 mAh/g at 0.5 C, and capacity retention was 96.7% at 5 C. These findings suggest that co-doping is beneficial to improving the electrochemical behavior of bare LNMO as a positive electrode material for aqueous rechargeable lithium-ion batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

This published article contains all of the data generated or analyzed during the study.

References

  1. S.T. Myung, K. Amine, Y.K. Sun, Nanostructured cathode materials for rechargeable lithium batteries. J. Power Sour. 283, 219 (2015)

    Article  CAS  Google Scholar 

  2. X. Li, D. Li, D. Song, X. Shi, X. Tang, H. Zhang, L. Zhang, A.C.S. Appl, Unravelling the structure and electrochemical performance of Li–Cr–Mn–O Cathodes: from spinel to layered. Mater. Interfaces 10, 8827 (2018)

    Article  CAS  Google Scholar 

  3. Kim H, Hong J, Park K, Kim H, S. K.-C., and undefined, 2014 ACS. Publ. (n.d.).

  4. W. Tang, Y. Zhu, Y. Hou, L. Liu, Y. Wu, K.P. Loh, H. Zhang, K. Zhu, Aqueous rechargeable lithium batteries as an energy storage system of superfast charging. Energy Environ. Sci. 6, 2093 (2013)

    Article  CAS  Google Scholar 

  5. Y. Wang, J. Yi, Y. Xia, Recent progress in aqueous lithium-ion batteries. Adv. Energy Mater. 2, 830 (2012)

    Article  CAS  Google Scholar 

  6. M. Pasta, C.D. Wessells, R.A. Huggins, Y. Cui, A high-rate and long cycle life aqueous electrolyte battery for grid-scale energy storage. Nat. Commun (2012). https://doi.org/10.1038/ncomms2139

    Article  Google Scholar 

  7. N. Alias, A.A. Mohamad, Advances of aqueous rechargeable lithium-ion battery: a review. J. Power Sour. 274, 237 (2015)

    Article  CAS  Google Scholar 

  8. W. Li, J.R. Dahn, J.H. Root, Mater. Res. Soc. Symp. – Proc. 369, 69 (1995)

    Article  CAS  Google Scholar 

  9. W. Li, J.R. Dahn, D.S. Wainwright, Rechargeable lithium batteries with aqueous electrolytes. Science (1994). https://doi.org/10.1126/science.264.5162.1115

    Article  Google Scholar 

  10. R. Ruffo, C. Wessells, R.A. Huggins, Y. Cui, Electrochemical behavior of LiCoO2 as aqueous lithium-ion battery electrodes. Electrochem. Commun. 11, 247 (2009)

    Article  CAS  Google Scholar 

  11. R. Ruffo, F. La Mantia, C. Wessells, R.A. Huggins, Y. Cui, Electrochemical characterization of LiCoO2 as rechargeable electrode in aqueous LiNO3 electrolyte. Solid State Ionics 192, 289 (2011)

    Article  CAS  Google Scholar 

  12. M.M. Rao, M. Jayalakshmi, O. Schäf, H. Wulff, U. Guth, F. Scholz, Electrochemical behaviour of solid lithium cobaltate (LiCoO2) and lithium manganate (LiMn2O4) in an aqueous electrolyte system. J. Solid State Electrochem. 5, 50 (2001)

    Article  CAS  Google Scholar 

  13. R.B. Shivashankaraiah, H. Manjunatha, K.C. Mahesh, G.S. Suresh, T.V. Venkatesha, Electrochemical characterization of polypyrrole–LiNi1/3Mn1/3Co1/3O2 composite cathode material for aqueous rechargeable lithium batteries. J. Solid State Electrochem. 16, 1279 (2012)

    Article  CAS  Google Scholar 

  14. N. Alias, A.A. Mohamad, Synthesis and electrochemical behavior of LiFePO4/C with an air–electrode in an aqueous lithium ion battery. Ceram. Int. 40, 13089 (2014)

    Article  CAS  Google Scholar 

  15. G. Yuan, J. Bai, T.N.L. Doan, P. Chen, Synthesis and electrochemical properties of LiFePO4/graphene composite as a novel cathode material for rechargeable hybrid aqueous battery. Mater. Lett. 158, 248 (2015)

    Article  CAS  Google Scholar 

  16. M. Zhao, G. Huang, F. Qu, F. Wang, X. Song, Electrochemical performances of (LiMn0.6Fe0.4PO4/C)//LiV3O8 in different aqueous solution electrolyte. Electrochim. Acta 151, 50 (2015)

    Article  CAS  Google Scholar 

  17. M. Zhao, G. Huang, B. Zhang, F. Wang, X. Song, Characteristics and electrochemical performance of LiFe0.5Mn0.5PO4/C used as cathode for aqueous rechargeable lithium battery. J. Power Sour. 211, 202 (2012)

    Article  CAS  Google Scholar 

  18. H. Manjunatha, T.V. Venkatesha, G.S. Suresh, Electrochemical studies of LiMnPO4 as aqueous rechargeable lithium–ion battery electrode. J. Solid State Electrochem. 16, 1941 (2012)

    Article  CAS  Google Scholar 

  19. W. Tang, S. Tian, L.L. Liu, L. Li, H.P. Zhang, Y.B. Yue, Y. Bai, Y.P. Wu, K. Zhu, Nanochain LiMn2O4 as ultra-fast cathode material for aqueous rechargeable lithium batteries. Electrochem. Commun. 13, 205 (2011)

    Article  CAS  Google Scholar 

  20. W. Tang, L.L. Liu, S. Tian, L. Li, L.L. Li, Y.B. Yue, Y. Bai, Y.P. Wu, K. Zhu, R. Holze, LiMn2O4 nanorods as a super-fast cathode material for aqueous rechargeable lithium batteries. Electrochem. Commun. 13, 1159 (2011)

    Article  CAS  Google Scholar 

  21. J. Zheng, Y. Hou, Y. Duan, X. Song, Y. Wei, T. Liu, J. Hu, H. Guo, Z. Zhuo, L. Liu, Z. Chang, X. Wang, D. Zherebetskyy, Y. Fang, Y. Lin, K. Xu, L.W. Wang, Y. Wu, F. Pan, Janus solid–liquid interface enabling ultrahigh charging and discharging rate for advanced lithium-ion batteries. Nano Lett. 15, 6102 (2015)

    Article  CAS  Google Scholar 

  22. F. Wang, X. Wang, Z. Chang, Y. Zhu, L. Fu, X. Liu, Y. Wu, Electrode materials with tailored facets for electrochemical energy storage. Nanoscale Horizons 1, 272 (2016)

    Article  CAS  Google Scholar 

  23. M. Zhao, X. Song, F. Wang, W. Dai, X. Lu, Electrochemical performance of single crystalline spinel LiMn2O4 nanowires in an aqueous LiNO3 solution. Electrochim. Acta 56, 5673 (2011)

    Article  CAS  Google Scholar 

  24. Q. Qu, L. Fu, X. Zhan, D. Samuelis, J. Maier, L. Li, S. Tian, Z. Li, Y. Wu, Porous LiMn2O4 as cathode material with high power and excellent cycling for aqueous rechargeable lithium batteries. Energy Environ. Sci. 4, 3985 (2011)

    Article  CAS  Google Scholar 

  25. J. Abou-Rjeily, I. Bezza, N.A. Laziz, C. Autret-Lambert, M.T. Sougrati, F. Ghamouss, High-rate cyclability and stability of LiMn2O4 cathode materials for lithium-ion batteries from low-cost natural β−MnO2. Energy Storage Mater. 26, 423 (2020)

    Article  Google Scholar 

  26. H. Seki, K. Yoshima, Y. Yamashita, S. Matsuno, N. Takami, J Power Sour. 482, 228950 (2021)

    Article  CAS  Google Scholar 

  27. G. Yuan, J. Bai, T.N.L. Doan, P. Chen, Synthesis and electrochemical investigation of nanosized LiMn2O4 as cathode material for rechargeable hybrid aqueous batteries. Mater Lett. 137, 311 (2014)

    Article  CAS  Google Scholar 

  28. H.A. Tariq, J.J. Abraham, A.A. Quddus, S. AlQaradawi, R. Kahraman, R.A. Shakoor, Graphene wrapped Y2O3 coated LiNi0.5Mn1.5O4 quasi-spheres as novel cathode materials for lithium-ion batteries. J Mater Res Technol 14, 1377 (2021)

    Article  CAS  Google Scholar 

  29. S. Willenberg, N. Ross, Enhanced electrochemistry of carbon supported functionalized nanocomposite cathode for aqueous lithium‐ion batteries. Electroanalysis 32, 2976 (2020)

    Article  CAS  Google Scholar 

  30. W. Xu, A. Yuan, Y. Wang, Electrochemical studies of LiCrxFexMn2−2xO4 in an aqueous electrolyte. J. Solid State Electrochem 16, 429 (2012)

    Article  CAS  Google Scholar 

  31. A. Yuan, L. Tian, W. Xu, Y. Wang, Al-doped spinel LiAl0.1Mn1.9O4 with improved high-rate cyclability in aqueous electrolyte. J Power Sour. 195, 5032 (2010)

    Article  CAS  Google Scholar 

  32. I.B. Stojković, N.D. Cvjetićanin, S.V. Mentus, The improvement of the Li-ion insertion behaviour of Li1.05Cr0.10Mn1.85O4 in an aqueous medium upon addition of vinylene carbonate. Electrochem Commun 12, 371 (2010)

    Article  Google Scholar 

  33. S. Li, K. Zhu, J. Liu, D. Zhao, X. Cui, J Electrochem Energy Convers Storage 16, 1 (2019)

    Google Scholar 

  34. X. Tang, J. Zhou, M. Bai, W. Wu, S. Li, Y. Ma, Investigation of the self-discharge behaviors of the LiMn2O4 cathode at elevated temperatures: in situ X-ray diffraction analysis and a co-doping mitigation strategy. J Mater Chem A 7, 13364 (2019)

    Article  CAS  Google Scholar 

  35. G.A. Dos Santos Junior, V.D.S. Fortunato, G.A.A. Bastos, G.G. Silva, P.F.R. Ortega, R.L. Lavall, High-performance lithium-ion hybrid supercapacitors based on lithium salt/imidazolium ionic liquid electrolytes and Ni-doped LiMn2O4 cathode materials. ACS Appl Energy Mater 3, 9028 (2020)

    Article  Google Scholar 

  36. D. Arumugam, G.P. Kalaignan, K. Vediappan, C.W. Lee, Synthesis and electrochemical characterizations of nano-scaled Zn doped LiMn2O4 cathode materials for rechargeable lithium batteries. Electrochim Acta 55, 8439 (2010)

    Article  CAS  Google Scholar 

  37. S. Bhuvaneswari, U.V. Varadaraju, R. Gopalan, R. Prakash, Structural stability and superior electrochemical performance of Sc-doped LiMn2O4 spinel as cathode for lithium ion batteries. Electrochim Acta 301, 342 (2019)

    Article  CAS  Google Scholar 

  38. A. Iqbal, A.M. Khan, T. Wang, D. Li, Y. Gao, Effect of Ni and Cu Substitution on the crystal structure, morphology and electrochemical performance of spinel LiMn2O4Int. J Electrochem Sci 14, 929 (2019)

    Article  CAS  Google Scholar 

  39. L. Liang, M. Xiang, W. Bai, J. Guo, C. Su, L. Yang, H. Bai, X. Liu, Electrochemical properties and kinetics of Li–Cu co-doping LiMn2O4 cathode materials. J Mater Sci Mater Electron 31, 286 (2020)

    Article  CAS  Google Scholar 

  40. S. Patel, R. Kumar Singh, R. Kumar, Mater Today Proc 42, 776 (2020)

    Article  Google Scholar 

  41. Y. Wang, X. Di, Z. Lu, R. Cheng, X. Wu, P. Gao, Controllable heterogeneous interfaces of cobalt/carbon nanosheets/rGO composite derived from metal-organic frameworks for high-efficiency microwave attenuation. Carbon N Y 187, 404 (2022)

    Article  CAS  Google Scholar 

  42. R. Cheng, Y. Wang, X. Di, Z. Lu, P. Wang, M. Ma, J. Ye, Construction of MOF-derived plum-like NiCo@C composite with enhanced multi-polarization for high-efficiency microwave absorption. J Colloid Interface Sci 609, 224 (2022)

    Article  CAS  Google Scholar 

  43. P. Scherrer, Bestimmung der inneren Struktur und der Größe von Kolloidteilchen mittels Röntgenstrahlen, in Kolloidchemie Ein Lehrbuch. (Springer, Heidelberg, 1912), pp.277–387

    Google Scholar 

  44. X. Li, X. Lian, and F. Liu, CICTP 2016 - Green Multimodal Transp. Logist. - InProc. 16th COTA Int. Conf. Transp. Prof 2016 1536

  45. V. Uvarov, I. Popov, Metrological characterization of X-ray diffraction methods at different acquisition geometries for determination of crystallite size in nano-scale materials. Mater Charact 85, 111 (2013)

    Article  CAS  Google Scholar 

  46. H. Björk, T. Gustafsson, J.O. Thomas, S. Lidin, V. Petříček, Long-range ordering during delithiation of LiMn2O4 cathode material. J Mater Chem 13, 585 (2003)

    Article  Google Scholar 

  47. Y. Sun, S. Jin, J Mater Chem 8, 2399 (1998)

    Article  CAS  Google Scholar 

  48. D.L. Fang, J.C. Li, X. Liu, P.F. Huang, T.R. Xu, M.C. Qian, C.H. Zheng, Synthesis of a Co–Ni doped LiMn2O4 spinel cathode material for high-power Li–ion batteries by a sol–gel mediated solid-state route. J Alloys Compd 640, 82 (2015)

    Article  CAS  Google Scholar 

  49. Z. Cai, Y. Ma, X. Huang, X. Yan, Z. Yu, S. Zhang, G. Song, Y. Xu, C. Wen, W. Yang, High electrochemical stability Al-doped spinel LiMn2O4 cathode material for Li-ion batteries. J Energy Storage (2020). https://doi.org/10.1016/j.est.2019.101036

    Article  Google Scholar 

  50. L. Wang, D. Chen, J. Wang, G. Liu, W. Wu, G. Liang, Synthesis of LiNi0.5Mn1.5O4 cathode material with improved electrochemical performances through a modified solid-state method. Powder Technol 292, 203 (2016)

    Article  CAS  Google Scholar 

  51. T.F. Yi, J. Mei, Y.R. Zhu, Key strategies for enhancing the cycling stability and rate capacity of LiNi0.5Mn1.5O4 as high-voltage cathode materials for high power lithium-ion batteries. J Power Sour. 316, 85 (2016)

    Article  CAS  Google Scholar 

  52. R. Thirunakaran, A. Sivashanmugam, S.R. GopukumarRajalakshmi, Cerium and zinc: Dual-doped LiMn2O4 spinels as cathode material for use in lithium rechargeable batteries. J Power Sour. 187, 565 (2009)

    Article  CAS  Google Scholar 

  53. Q. Chen, H. Liu, J. Hao, S. Bi, C. Gao, L. Chen, Synthesis and characterization of high-performance RGO-modified LiNi0.5Mn1.5O4 nanorods as a high power density cathode material for Li-ion batteries. Ionics 25, 99 (2019)

    Article  CAS  Google Scholar 

  54. Y.J. Wei, L.Y. Yan, C.Z. Wang, X.G. Xu, F. Wu, G. Chen, Effects of Ni doping on [MnO6] Octahedron in LiMn2O4. J Power Sour. (2004). https://doi.org/10.1021/jp0479522

    Article  Google Scholar 

  55. G.B. Zhong, Y.Y. Wang, Y.Q. Yu, C.H. Chen, Electrochemical investigations of the LiNi0.45M0.10Mn1.45O4 (M=Fe, Co, Cr) 5V cathode materials for lithium ion batteries. J Power Sour. 205, 385 (2012)

    Article  CAS  Google Scholar 

  56. S. Niketic, M. Couillard, D. Macneil, Y. Abu-Lebdeh, Improving the performance of high voltage LiMn1.5Ni0.5O4 cathode material by carbon coating. J Power Sour. 271, 285 (2014)

    Article  CAS  Google Scholar 

  57. P. Liu, S. Gao, G. Zhang, Y. Huang, W. You, R. Che, Adv Funct Mater 31, 1 (2021)

    Google Scholar 

  58. H. Xu, G. Zhang, Y. Wang, M. Ning, B. Ouyang, Y. Zhao, Y. Huang, P. Liu, Size-dependent oxidation-induced phase engineering for MOFs derivatives via spatial confinement strategy toward enhanced microwave absorption. Nano-Micro Lett (2022). https://doi.org/10.1007/s40820-022-00841-5

    Article  Google Scholar 

  59. F.X. Wang, S.Y. Xiao, Y. Shi, L.L. Liu, Y.S. Zhu, Y.P. Wu, J.Z. Wang, R. Holze, Spinel LiNixMn2−xO4 as cathode material for aqueous rechargeable lithium batteries. Electrochim Acta 93, 301 (2013)

    Article  CAS  Google Scholar 

  60. S. Chen, Z. Chen, C. Cao, Mesoporous spinel LiMn2O4 cathode material by a soft-templating route. Electrochim Acta 199, 51 (2016)

    Article  CAS  Google Scholar 

  61. D. Arumugam, G. Paruthimal Kalaignan, Synthesis and electrochemical characterizations of nano size Ce doped LiMn2O4 cathode materials for rechargeable lithium batteries. J Electroanal Chem 648, 54 (2010)

    Article  CAS  Google Scholar 

  62. Y.K. Sun, Y.S. Jeon, Overcoming Jahn–Teller distortion of oxysulfide spinel materials for lithium secondary batteries. J Mater Chem 9, 3147 (1999)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the Sophisticated Instrument Centre (SIC) funded by the DST purse (phase-II) of Dr. Hari Singh Gour Vishwavidyalaya Sagar for providing numerous characterization resources (XRD, SEM, TEM, and others).

Funding

Shwetambar, one of the authors, acknowledges the University Grant Commission, Government of India for Junior Research Fellowship (Grant No.201819-NFO-2018-19-OBC-MAD-75121) for offering financial assistance.

Author information

Authors and Affiliations

Authors

Contributions

SP contributed to the conception, data acquisition, and evaluation as well as the writing of the article. RK contributed significantly to the execution and explanation of the experiment’s idea. SS, AS, SP, and AKS significantly contributed to the interpretation of the data.

Corresponding author

Correspondence to Shwetambar Patel.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that might have influenced the research presented in this study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patel, S., Kumar, R., Soni, S. et al. Synthesis and electrochemical investigation of lithium and cobalt dual-doped spinel LNMO nanomaterial as cathode for aqueous rechargeable lithium-ion battery. J Mater Sci: Mater Electron 33, 25891–25906 (2022). https://doi.org/10.1007/s10854-022-09280-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-09280-9

Navigation