Skip to main content

Advertisement

Log in

Heterojunction CdS/CuO/ZnO branched nanowire photoelectrodes for efficient photoelectrochemical water splitting

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Developing of novel photoelectrode materials with high durability and efficiency is a key step for practical realization of solar driven photoelectrochemical (PEC) water splitting. Herein, we report a rational and simple approach to fabricate heterojunction CdS/CuO/ZnO branched nanowires serving as the photoelectrodes with boosted PEC efficiency toward highly efficient water splitting. The ZnO branched nanowires were first hydrothermally synthesized from electrospun ZnO nanofibers followed by decorating of CuO nanoparticles via photoreduction. Finally, CdS nanoparticles were wrapped thoroughly the CuO/ZnO heterojuction by chemical bath deposition that form a socalled “ternary core–shell” structure. The optimized heterojunction CdS/CuO/ZnO branched nanowire photoelectrode displays a significantly enhanced photoconversion efficiency of 3.9% under solar simulation, which is 1.8, 18 and 30 times higher than that of the corresponding CdS/ZnO, CuO/ZnO and pristine ZnO branched nanowire photoelectrodes, respectively. The largest hydrogen production was measured to be 1.7 mL cm−2 upon 3600 s exposure time, which is about 1.7 times greater than that of the CdS/ZnO electrode and in line with the one extrapolated from the PEC water splitting measurement. Our finding provides a rational strategy for the design of highly efficient and durable photoelectrodes for PEC water splitting process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

All data generated or analysed during this study are included in this published article.

References

  1. L. Wang, J. Han, J. Feng, X. Wang, D. Su, X. Hou, J. Hou, J. Liang, S.X. Dou, Int. J. Hydrog. Energy. 44, 30899 (2019)

    Article  CAS  Google Scholar 

  2. J. Su, H. Cai, J. Yang, X. Ye, R. Han, J. Ni, J. Li, J. Zhang, ACS Appl. Mater. Interfaces. 12, 3531 (2020)

    Article  CAS  Google Scholar 

  3. S. Pang, Biotech Adv. 37, 589 (2019)

    Article  CAS  Google Scholar 

  4. H. Dotan, A. Landman, S.W. Sheehan, K.D. Malviya, G.E. Shter, D.A. Grave, Z. Arzi, N. Yehudai, M. Halabi, N. Gal, N. Hadari, C. Cohen, A. Rothschild, G.S. Grader, Nat. Energy. 4, 786 (2019)

    Article  CAS  Google Scholar 

  5. Z. Zhao, H. Zhou, L. Zheng, P. Niua, G. Yanga, W. Hua, J. Ranc, S. Qiaoc, J. Wang, H. Zhenga, Nano Energy 42, 90 (2017)

    Article  CAS  Google Scholar 

  6. A. Ali, P.K. Shen, Carbon Energy 2, 99 (2020)

    Article  CAS  Google Scholar 

  7. X.Q. Du, C.R. Huang, X.S. Zhang, Int. J. Hydrog. Energy. 44, 19953 (2019)

    Article  CAS  Google Scholar 

  8. X. Zou, Z. Sun, Y.H. Hu, J. Mater. Chem. A. 8, 21474 (2020)

    Article  CAS  Google Scholar 

  9. X. Yang, A. Wolcott, G. Wang, A. Sobo, R.C. Fitzmorris, F. Qian, J.Z. Zhang, Y. Li, Nano Lett. 9, 2331 (2009)

    Article  CAS  Google Scholar 

  10. A. Kay, I. Cesar, M. Grätzel, J. Am. Chem. Soc. 128, 15714 (2006)

    Article  CAS  Google Scholar 

  11. V.N. Nguyen, M.T. Doan, M.V. Nguyen, J. Mater. Sci. Mater. Electron. 30, 926 (2019)

    Article  CAS  Google Scholar 

  12. J. Su, X. Feng, J.D. Sloppy, L. Guo, C.A. Grimes, Nano Lett. 11, 203 (2010)

    Article  Google Scholar 

  13. G. Wang, Y. Ling, H. Wang, X. Yang, C. Wang, J.Z. Zhang, Y. Li, Energy Environ. Sci. 5, 6180 (2012)

    Article  CAS  Google Scholar 

  14. Y. Qiu, K. Yan, H. Deng, S. Yang, Nano Lett. 12, 407 (2011)

    Article  Google Scholar 

  15. A. Paracchino, N. Mathews, T. Hisatomi, M. Stefifik, S.D. Tilley, M. Gratzel, Energy Environ. Sci. 5, 8673 (2012)

    Article  CAS  Google Scholar 

  16. S.C. Warren, E. Thimsen, Energy Environ. Sci. 5, 5133 (2012)

    Article  CAS  Google Scholar 

  17. Y. Ling, G. Wang, J. Reddy, C. Wang, J.Z. Zhang, Y. Li, Angew. Chem. Int. Ed. 51, 4074 (2012)

    Article  CAS  Google Scholar 

  18. G. Wang, H. Wang, Y. Ling, Y. Tang, X. Yang, R.C. Fitzmorris, C. Wang, J.Z. Zhang, Y. Li, Nano Lett. 11, 3026 (2011)

    Article  CAS  Google Scholar 

  19. X. Zhao, P. Wang, B. Li, Chem. Commun. 46, 6768 (2010)

    Article  CAS  Google Scholar 

  20. W.-M. Jin, J.-H. Kang, J.H. Moon, A.C.S. Appl, Mater. Interfaces. 2, 2982 (2010)

    Article  CAS  Google Scholar 

  21. C.-Y. Chiang, J. Epstein, A. Brown, J.N. Munday, J.N. Culver, S. Ehrman, Nano Lett. 12, 6005 (2012)

    Article  CAS  Google Scholar 

  22. A. Kargar, K. Sun, Y. Jing, C. Choi, H. Jeong, G.Y. Jung, S. Jin, D. Wang, ACS Nano 7, 9407 (2013)

    Article  CAS  Google Scholar 

  23. Y. Bu, Z. Chen, W. Li, Dalton Trans. 42, 16272 (2013)

    Article  CAS  Google Scholar 

  24. F.K. Meng, J.T. Li, S.K. Cushing, M.J. Zhi, N.Q. Wu, J. Am. Chem. Soc. 135, 10286 (2013)

    Article  CAS  Google Scholar 

  25. Q. Yu, X.G. Meng, T. Wang, P. Li, L.Q. Liu, K. Chang, G.G. Liu, J.H. Ye, Chem. Commun. 51, 3630 (2015)

    Article  CAS  Google Scholar 

  26. J. Yu, S. Zhuang, X. Xu, W. Zhu, B. Feng, J. Hu, J. Mater. Chem. A. 3, 1199 (2015)

    Article  CAS  Google Scholar 

  27. Z. Kang, X. Yan, Y. Wang, Z. Bai, Y. Liu, Z. Zhang, P. Lin, X. Zhang, H. Yuan, X. Zhang, Y. Zhang, Sci. Rep. 5, 7882 (2015)

    Article  CAS  Google Scholar 

  28. P.Y. Kuang, J.R. Ran, Z.Q. Liu, H.J. Wang, N. Li, Y.Z. Su, Y.G. Jin, S.Z. Qiao, Chem. Eur. J. 21, 15360 (2015)

    Article  CAS  Google Scholar 

  29. C. Liu, F. Meng, L. Zhang, D. Zhang, S. Wei, K. Qi, J. Fan, H. Zhang, X. Cui, Appl. Surf. Sci. 469, 279 (2019)

    Google Scholar 

  30. X. Jiang, B. Tian, J. Xiang, F. Qian, G. Zheng, H. Wang, L. Mai, C.M. Liebe, Proc. Natl. Acad. Sci. USA 108, 12212 (2011)

    Article  CAS  Google Scholar 

  31. N. Chen, Y. Hu, X. Liu, J. Yang, W. Li, D. Lu, J. Fu, Y. Liang, W. Wang, J. Phys. Chem. C. 124, 21968 (2020)

    Article  CAS  Google Scholar 

  32. H. Yoo, S. Kahng, J.H. Kim, Sol. Energy Mater. Sol. Cells. 204, 110211 (2020)

    Article  CAS  Google Scholar 

  33. Y. Choi, M. Beak, K. Yong, Nanoscale 6, 8914 (2014)

    Article  CAS  Google Scholar 

  34. P.-Y. Kuang, X.-J. Zheng, J. Lin, X.-B. Huang, N. Li, X. Li, Z.-Q. Liu, ACS Omega 2, 852 (2017)

    Article  CAS  Google Scholar 

  35. T.-L. Li, Y.-L. Lee, H. Teng, J. Mater. Chem. 21, 5089 (2011)

    Article  CAS  Google Scholar 

  36. C. Li, X. Zhu, H. Zhang, Z. Zhu, B. Liu, C. Cheng, Adv. Mater. Interfaces. 14, 1500428 (2015)

    Article  Google Scholar 

  37. H.N. Hieu, N.V. Nghia, N.M. Vuong, H.V. Bui, Chem. Commun. 56, 3975 (2020)

    Article  CAS  Google Scholar 

  38. H.N. Hieu, N.Q. Dung, J. Kim, D. Kim, Nanoscale 5, 5530 (2013)

    Article  CAS  Google Scholar 

  39. L. Zhu, H. Li, Z. Liu, P. Xia, Y. Xie, D. Xiong, J. Phys. Chem. C. 122, 9531 (2018)

    Article  CAS  Google Scholar 

  40. R. Naeem, M.A. Ehsan, A. Rehman, Z.H. Yamani, A.S. Hakeem, M. Mazhar, New J. Chem. 42, 5256 (2018)

    Article  CAS  Google Scholar 

  41. C. Liu, Y. Qiu, F. Wang, K. Wang, Q. Liang, Z. Chen, Adv. Mater. Interfaces 4, 1700681 (2017)

    Article  Google Scholar 

  42. R. Bai, D. Kumar, S. Chaudhary, D.K. Pandya, J. Phys. Chem. C. 26, 14419 (2018)

    Google Scholar 

  43. A.G. Tamirat, J. Rick, A.A. Dubale, W.-N. Su, B.-J. Hwang, Nanoscale Horiz. 1, 243 (2016)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Ministry of Education and Training of Vietnam under the grant number B2021-DQN-03.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by [HNH] and [NVN]. The first draft of the manuscript was written by [HNH], [THP] and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Hoang Nhat Hieu.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hieu, H.N., Van Nghia, N., Vuong, N.M. et al. Heterojunction CdS/CuO/ZnO branched nanowire photoelectrodes for efficient photoelectrochemical water splitting. J Mater Sci: Mater Electron 33, 25567–25579 (2022). https://doi.org/10.1007/s10854-022-09255-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-09255-w

Navigation