Skip to main content

Advertisement

Log in

New efficient and recyclable magnetic nanohybrid adsorbent for the metronidazole removal from simulated wastewater

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Carbohydrate polymers, such as cellulose and its derivatives, are the most abundant materials that find in nature that can use as adsorbents for water treatment. Carboxymethyl cellulose (CMC) or cellulose gum is one of the cellulose derivatives with carboxymethyl groups which has features such as biodegradability, biocompatibility, hydrophilicity, non-toxicity, and low cost. In this case, CMC was utilized to synthesize CoFe2O4@CMC/Hydrogen-exchanged Zeolite Socony Mobil-5 (HZSM-5). The aim of this research was the synthesis of CoFe2O4@CMC/HZSM-5 in green conditions as a new nanomagnetic adsorbent for metronidazole (MNZ) removal from the aqueous media. The physicochemical structure of the adsorbent was characterized by various techniques. After that, in the adsorption process under the optimal conditions including pH 6, temperature 20 °C, MNZ concentration of 50 mg/L, contact time 60 min, and adsorbent dose 2 g/L, the synthetic and real samples removal efficiency was obtained 94% and 85%, respectively. The adsorption experiments were fitted with the Freundlich isotherm and pseudo-second-order kinetic. The values of entropy changes (ΔS = 46 J/mol k), enthalpy changes (ΔH = 9.33 kJ/mol), and negative Gibbs free energy changes (ΔG) showed that the adsorption process was endothermic, random, and spontaneous and had a physical mechanism. In addition, the findings showed that after the nanosorbent recovery, the adsorbent chemical structure did not change and the efficiency decreased to 86% after six runs. CoFe2O4@CMC/HZSM-5 magnetic nanocomposite had effective adsorption capacity for MNZ removal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

Considering that sharing data in Research Square is part of submitting to Springer Nature journals, the data that support the findings of this study are openly available for all in Research Square at https://doi.org/10.21203/rs.3.rs-689828/v1.

References

  1. P. Wang, D. Wu, X. You, Y. Su, B. Xie, Antibiotic and metal resistance genes are closely linked with nitrogen-processing functions in municipal solid waste landfills. J Hazard Mater. 403, 123689 (2021)

    Article  CAS  Google Scholar 

  2. H. Guo, Z. Li, L. Xiang, N. Jiang, Y. Zhang, H. Wang et al., Efficient removal of antibiotic thiamphenicol by pulsed discharge plasma coupled with complex catalysis using graphene-WO3-Fe3O4 nanocomposites. J Hazard Mater. 403, 123673 (2021)

    Article  CAS  Google Scholar 

  3. M.J. Stephen, Disadvantages of set length antibiotic treatment for pulmonary exacerbation. Lancet Respir Med. 6(8), 573–575 (2018)

    Article  Google Scholar 

  4. D.H. Carrales-Alvarado, I. Rodríguez-Ramos, R. Leyva-Ramos, E. Mendoza-Mendoza, D.E. Villela-Martínez, Effect of surface area and physical–chemical properties of graphite and graphene-based materials on their adsorption capacity towards metronidazole and trimethoprim antibiotics in aqueous solution. Chem Eng J. 402, 126155 (2020)

    Article  CAS  Google Scholar 

  5. P. Grenni, V. Ancona, C.A. Barra, Ecological effects of antibiotics on natural ecosystems: a review. Microchem J. 136, 25–39 (2018)

    Article  CAS  Google Scholar 

  6. S. Rajabi, A. Nasiri, M. Hashemi, Enhanced activation of persulfate by CuCoFe2O4@MC/AC as a novel nanomagnetic heterogeneous catalyst with ultrasonic for metronidazole degradation. Chemosphere 286, 131872 (2022)

    Article  CAS  Google Scholar 

  7. N. Sharifi, A. Nasiri, S. Silva Martínez, H. Amiri, Synthesis of Fe3O4@activated carbon to treat metronidazole effluents by adsorption and heterogeneous Fenton with effluent bioassay. J Photochem Photobiol A Chem. 427, 113845 (2022)

    Article  CAS  Google Scholar 

  8. N. Sharifi, A. Nasiri, S.S. Martínez, H. Amiri, Synthesis of Fe3O4@ activated carbon to treat metronidazole effluents by adsorption and heterogeneous Fenton with effluent bioassay. J Photochem Photobiol A Chem. 427, 113845 (2022)

    Article  CAS  Google Scholar 

  9. M. Malakootian, A. Nasiri, M. Khatami, H. Mahdizadeh, P. Karimi, M. Ahmadian et al., Experimental data on the removal of phenol by electro-H2O2 in presence of UV with response surface methodology. MethodsX. 6, 1188–1193 (2019)

    Article  Google Scholar 

  10. K. Naddafi, R. Nabizadeh, S. Silva-Martinez, S.J. Shahtaheri, K. Yaghmaeian, A. Badiei et al., Modeling of chlorpyrifos degradation by TiO2 photo catalysis under visible light using response surface methodology. Desalin Water Treat. 106, 220–225 (2018)

    Article  CAS  Google Scholar 

  11. K. Naddafi, S.S. Martinez, R. Nabizadeh, K. Yaghmaeian, S.J. Shahtaheri, H. Amiri, Chlorpyrifos remediation in agriculture runoff with homogeneous solar photo-Fenton reaction at near neutral pH: phytotoxicity assessment. Water Sci Technol. 83(1), 212–222 (2021)

    Article  CAS  Google Scholar 

  12. M. Malakootian, A. Nasiri, M.R. Heidari, Removal of phenol from steel plant wastewater in three dimensional electrochemical (TDE) process using CoFe2O4@AC/H2O2. Z. Phys. Chemie. 234(10), 1661–1679 (2020)

    Article  CAS  Google Scholar 

  13. W. Wang, X. Li, S. Yuan, J. Sun, S. Zheng, Effect of resin charged functional group, porosity, and chemical matrix on the long-term pharmaceutical removal mechanism by conventional ion exchange resins. Chemosphere 160, 71–79 (2016)

    Article  CAS  Google Scholar 

  14. D. Mousel, D. Bastian, J. Firk, L. Palmowski, J. Pinnekamp, Removal of pharmaceuticals from wastewater of health care facilities. Sci Total Environ. 751, 141310 (2021)

    Article  CAS  Google Scholar 

  15. T.I.A. Gouveia, A.M.T. Silva, A.R. Ribeiro, A. Alves, M.S.F. Santos, Liquid-liquid extraction as a simple tool to quickly quantify fourteen cytostatics in urban wastewaters and access their impact in aquatic biota. Sci Total Environ. 740, 139995 (2020)

    Article  CAS  Google Scholar 

  16. B.L. Phoon, C.C. Ong, M.S. Mohamed Saheed, P.-L. Show, J.-S. Chang, T.C. Ling et al., Conventional and emerging technologies for removal of antibiotics from wastewater. J Hazard Mater. 400, 122961 (2020)

    Article  Google Scholar 

  17. M.L. Ferrey, M. Coreen Hamilton, W.J. Backe, K.E. Anderson, Pharmaceuticals and other anthropogenic chemicals in atmospheric particulates and precipitation. Sci Total Environ. 612, 1488–1497 (2018)

    Article  CAS  Google Scholar 

  18. J.-L. Ding, R. Liu, W. Zheng, W.-J. Yu, Z.-X. Ye, L.-J. Chen et al., Method for simultaneous determination of 11 veterinary antibiotics in piggery wastewater and sludge and its application in biological treatment. Huanjing Kexue/Environmental Sci. 36(10), 3918–3925 (2015)

    CAS  Google Scholar 

  19. J.D. García-Espinoza, M. Zolfaghari, N.P. Mijaylova, Synergistic effect between ultraviolet irradiation and electrochemical oxidation for removal of humic acids and pharmaceuticals. Water Environ J. 34(2), 232–246 (2020)

    Article  Google Scholar 

  20. M. Malakootian, A.J. Smith, M.A. Gharaghani, H. Mahdizadeh, A. Nasiri, G. Yazdanpanah, Decoloration of textile Acid Red 18 dye by hybrid UV/COP advanced oxidation process using ZnO as a catalyst immobilized on a stone surface. Desalin Water Treat. 182, 385–394 (2020)

    Article  CAS  Google Scholar 

  21. K. Rajabizadeh, G. Yazdanpanah, S. Dowlatshahi, M. Malakootian, Photooxidation process efficiency (UV/O3) for P-nitroaniline removal from aqueous solutions. Ozone Sci Eng. 42(5), 420–427 (2020)

    Article  CAS  Google Scholar 

  22. S.-M. Germán, R.-M. Gabriela, S.-C. Dora, R. Rubí, N. Reyna, Advanced Oxidation Processes: Ozonation and Fenton Processes Applied to the Removal of Pharmaceuticals. Vol. 66, Handbook of Environmental Chemistry. Centro Conjunto de Investigación en Química Sustentable UAEM-UNAM, Facultad de Química, Universidad Autónoma del Estado de México, Toluca, Estado de México ( Springer Verlag, Mexico, 2019), pp. 119–42.

  23. Mahdizadeh H, Nasiri A, Gharaghani MA, Yazdanpanah G. Hybrid UV/COP advanced oxidation process using ZnO as a catalyst immobilized on a stone surface for degradation of acid red 18 dye. MethodsX. 2020;7.

  24. Obotey Ezugbe E, Rathilal S. Membrane Technologies in Wastewater Treatment: A Review. Vol. 10, Membranes . 2020.

  25. P. Rajasulochana, V. Preethy, Comparison on efficiency of various techniques in treatment of waste and sewage water – A comprehensive review. Resour Technol. 2(4), 175–184 (2016)

    Google Scholar 

  26. M.H. Dehghani, M. Faraji, A. Mohammadi, H. Kamani, Optimization of fluoride adsorption onto natural and modified pumice using response surface methodology: isotherm, kinetic and thermodynamic studies. Korean J Chem Eng. 34(2), 454–462 (2017)

    Article  CAS  Google Scholar 

  27. N. Khoshnamvand, A. Jafari, B. Kamarehie, A. Mohammadi, M. Faraji, Removal of malachite green dye from aqueous solutions using Zeolitic imidazole Framework-8. Environ Process. 6(3), 757–772 (2019)

    Article  CAS  Google Scholar 

  28. A. Nasiri, S. Rajabi, M. Hashemi, CoFe2O4@Methylcellulose/AC as a New, Green, and Eco-friendly Nano-magnetic adsorbent for removal of Reactive Red 198 from aqueous solution. Arab J Chem. 15(5), 103745 (2022)

    Article  CAS  Google Scholar 

  29. A. Nasiri, S. Rajabi, M. Hashemi, H. Nasab, CuCoFe2O4@MC/AC as a new hybrid magnetic nanocomposite for metronidazole removal from wastewater: Bioassay and toxicity of effluent. Sep Purif Technol. 296, 121366 (2022)

    Article  CAS  Google Scholar 

  30. N. Jaafarzadeh, M. Ahmadi, S. Silva Martinez, H. Amiri, Removal of As (III) and As (V) from aqueous solution using modified solid waste vegetable oil industry as a natural adsorbent. Environ Eng Manag J. 13(2), 369 (2014)

    Article  CAS  Google Scholar 

  31. N. Khoshnamvand, A. Jafari, B. Kamarehie, M. Faraji, Optimization of adsorption and sonocatalytic degradation of fluoride by zeolitic imidazole framework-8 (ZIF-8) using RSM-CCD. Desalin Water Treat. 171, 270–280 (2019)

    Article  CAS  Google Scholar 

  32. M. Malakootian, M. Faraji, M. Malakootian, M. Nozari, M. Malakootian, Ciprofloxacin removal from aqueous media by adsorption process: a systematic review and meta-analysis. Desalin Water Treat. 229, 252–282 (2021)

    Article  CAS  Google Scholar 

  33. S. Maleky, A, Asadipour, A, Nasiri, R Luque, M, Faraji,. Tetracycline adsorption from aqueous media by magnetically separable Fe3O4@ methylcellulose/APTMS: isotherm, kinetic and thermodynamic studies. J Polym Environ. 2022; 1–17.

  34. A. Nasiri, M. Malakootian, N. Javid, Modelling and optimization of lead adsorption by CoFe2 O4 @CMC@HZSM-5 from aqueous solution using response surface methodology. Desalin Water Treat. 248, 134–148 (2022)

    Article  CAS  Google Scholar 

  35. A. Nasiri, S. Rajabi, A. Amiri, M. Fattahizade, O. Hasani, A. Lalehzari et al., Adsorption of tetracycline using CuCoFe2O4@Chitosan as a new and green magnetic nanohybrid adsorbent from aqueous solutions: Isotherm, kinetic and thermodynamic study. Arab J Chem. 15(8), 104014 (2022)

    Article  CAS  Google Scholar 

  36. S. De Gisi, G. Lofrano, M. Grassi, M. Notarnicola, Characteristics and adsorption capacities of low-cost sorbents for wastewater treatment: a review. Sustain Mater Technol. 9, 10–40 (2016)

    Google Scholar 

  37. P.K. Yeow, S.W. Wong, T. Hadibarata, Removal of azo and anthraquinone dye by plant biomass as adsorbent: a review. Biointerface Res Appl Chem. 11(1), 8218–8232 (2021)

    CAS  Google Scholar 

  38. D.S. Dlamini, J.M. Tesha, G.D. Vilakati, B.B. Mamba, A.K. Mishra, J.M. Thwala et al., A critical review of selected membrane- and powder-based adsorbents for water treatment: Sustainability and effectiveness. J Clean Prod. 277, 123497 (2020)

    Article  CAS  Google Scholar 

  39. S. Kulkarni, Synthesis, characterization and performance of low-cost unconventional adsorbents derived from waste materials. Biointerface Res Appl Chem. 10(6), 7243–7256 (2020)

    Article  CAS  Google Scholar 

  40. C. Duan, T. Ma, J. Wang, Y. Zhou, Removal of heavy metals from aqueous solution using carbon-based adsorbents: a review. J Water Process Eng. (2020). https://doi.org/10.21203/rs.3.rs-1115245/v1

    Article  Google Scholar 

  41. Y. Deng, Low-cost adsorbents for urban stormwater pollution control. Front Environ Sci Eng. 14(5), 1–8 (2020)

    Article  Google Scholar 

  42. N. Amirmahani, M. Rashidi, N.O. Mahmoodi, Synthetic application of gold complexes on magnetic supports. Appl Organomet Chem. 34(5), e5626 (2020)

    Article  CAS  Google Scholar 

  43. N. Amirmahani, N.O. Mahmoodi, M. Malakootian, A. Pardakhty, N. Seyedi, Pd nanoparticles supported on Fe 3 O 4@ SiO 2-Schiff base as an efficient magnetically recoverable nanocatalyst for Suzuki-Miyaura coupling reaction. Res Chem Intermed. 46, 4595 (2020)

    Article  CAS  Google Scholar 

  44. N. Amirmahani, N.O. Mahmoodi, M. Bahramnejad, N. Seyedi, Recent developments of metallic nanoparticles and their catalytic activity in organic reactions. J Chinese Chem Soc. 67, 1326 (2020)

    Article  CAS  Google Scholar 

  45. N. Amirmahani, H. Mahdizadeh, M. Malakootian, A. Pardakhty, N.O. Mahmoodi, Evaluating nanoparticles decorated on Fe3O4@SiO2-Schiff Base (Fe3O4@SiO2-APTMS-HBA) in adsorption of ciprofloxacin from aqueous environments. J Inorg Organomet Polym Mater. 30(9), 3540–3551 (2020)

    Article  CAS  Google Scholar 

  46. A. Rebekah, G. Bharath, M. Naushad, C. Viswanathan, N. Ponpandian, Magnetic graphene/chitosan nanocomposite: a promising nano-adsorbent for the removal of 2-naphthol from aqueous solution and their kinetic studies. Int J Biol Macromol. 159, 530–538 (2020)

    Article  CAS  Google Scholar 

  47. N. Rong, C. Chen, K. Ouyang, K. Zhang, X. Wang, Z. Xu, Adsorption characteristics of directional cellulose nanofiber/chitosan/montmorillonite aerogel as adsorbent for wastewater treatment. Sep Purif Technol. 274, 119120 (2021)

    Article  CAS  Google Scholar 

  48. D.A. Rahim, W. Fang, G. Zhu, H. Wibowo, D. Hantoko, Q. Hu et al., Microwave-assisted synthesis of Zn-Fe adsorbent supported on alumina: Effect of Zn to Fe ratio on syngas desulfurization performance. Chem Eng Process - Process Intensif. 168, 108565 (2021)

    Article  CAS  Google Scholar 

  49. J. Du, Y. Li, Z. Miao, Difunctional adsorbents Ni/ZnO–HZSM-5 on adsorption desulfurization and aromatization of olefin reaction. Trans Tianjin Univ. 25(2), 143–151 (2019)

    Article  CAS  Google Scholar 

  50. Y. Wang, D. Yang, S. Li, M. Chen, L. Guo, J. Zhou, Ru/hierarchical HZSM-5 zeolite as efficient bi-functional adsorbent/catalyst for bulky aromatic VOCs elimination. Microporous Mesoporous Mater. 258, 17–25 (2018)

    Article  CAS  Google Scholar 

  51. C. Ye, C. Wu, Z. Qi, Z. Huang, T. Qiu, Preparation of a Fe-ZSM-5 adsorbent and its selective adsorption of p-xylene performance exploration. J Chem Eng Data. 65(4), 2194–2205 (2020)

    Article  CAS  Google Scholar 

  52. S. Yao, W. Fang, B. Wang, Y. Zeng, L. Chen, X. Yan et al., Rh1Cu3/ZSM-5 as an efficient bifunctional catalyst/adsorbent for VOCs abatement. Catal Letters. 152, 771 (2021)

    Article  Google Scholar 

  53. F. Zahakifar, A.R. Keshtkar, M. Talebi, Synthesis of sodium alginate (SA)/ polyvinyl alcohol (PVA)/ polyethylene oxide (PEO)/ ZSM-5 zeolite hybrid nanostructure adsorbent by casting method for uranium (VI) adsorption from aqueous solutions. Prog Nucl Energy. 134, 103642 (2021)

    Article  CAS  Google Scholar 

  54. S. Radoor, J. Karayil, A. Jayakumar, J. Parameswaranpillai, S. Siengchin, Removal of methylene blue dye from aqueous solution using PDADMAC modified ZSM-5 zeolite as a novel adsorbent. J Polym Environ. 29(10), 3185–3198 (2021)

    Article  CAS  Google Scholar 

  55. G. Crini, Recent developments in polysaccharide-based materials used as adsorbents in wastewater treatment. Prog Polym Sci. 30(1), 38–70 (2005)

    Article  CAS  Google Scholar 

  56. S. Hokkanen, A. Bhatnagar, M. Sillanpää, A review on modification methods to cellulose-based adsorbents to improve adsorption capacity. Water Res. 91, 156–173 (2016)

    Article  CAS  Google Scholar 

  57. G. Zhang, L. Yi, H. Deng, P. Sun, Dyes adsorption using a synthetic carboxymethyl cellulose-acrylic acid adsorbent. J Environ Sci (China). 26(5), 1203–1211 (2014)

    Article  CAS  Google Scholar 

  58. T. Benhalima, H. Ferfera-Harrar, Eco-friendly porous carboxymethyl cellulose/dextran sulfate composite beads as reusable and efficient adsorbents of cationic dye methylene blue. Int J Biol Macromol. 132, 126–141 (2019)

    Article  CAS  Google Scholar 

  59. Y. Chen, Y. Long, Q. Li, X. Chen, X. Xu, Synthesis of high-performance sodium carboxymethyl cellulose-based adsorbent for effective removal of methylene blue and Pb (II). Int J Biol Macromol. 126, 107–117 (2019)

    Article  CAS  Google Scholar 

  60. W. Wei, S. Kim, M.-H. Song, J.K. Bediako, Y.-S. Yun, Carboxymethyl cellulose fiber as a fast binding and biodegradable adsorbent of heavy metals. J Taiwan Inst Chem Eng. 57, 104–110 (2015)

    Article  CAS  Google Scholar 

  61. K. Manzoor, M. Ahmad, S. Ahmad, S. Ikram, Removal of Pb(ii) and Cd(ii) from wastewater using arginine cross-linked chitosan-carboxymethyl cellulose beads as green adsorbent. RSC Adv. 9(14), 7890–7902 (2019)

    Article  CAS  Google Scholar 

  62. A. Salama, N. Shukry, M. El-Sakhawy, Carboxymethyl cellulose-g-poly(2-(dimethylamino) ethyl methacrylate) hydrogel as adsorbent for dye removal. Int J Biol Macromol. 73(1), 72–75 (2015)

    Article  CAS  Google Scholar 

  63. A.H. Nordin, N. Ngadi, Z. Mohamad, M. Jusoh, A. Arsad, Chemical regeneration of modified magnetic-PEI-cellulose adsorbent for removal of anionic reactive black 5 dyes. Int J Recent Technol Eng. 7(6), 1629–1632 (2019)

    Google Scholar 

  64. S. Karami, B. Zeynizadeh, Reduction of 4-nitrophenol by a disused adsorbent: EDA-functionalized magnetic cellulose nanocomposite after the removal of Cu 2+. Carbohydr Polym. 211, 298–307 (2019)

    Article  CAS  Google Scholar 

  65. F. Tamaddon, M.H. Mosslemin, A. Asadipour, M.A. Gharaghani, A. Nasiri, Microwave-assisted preparation of ZnFe2O4@methyl cellulose as a new nano-biomagnetic photocatalyst for photodegradation of metronidazole. Int J Biol Macromol. 154, 1036–1049 (2020)

    Article  CAS  Google Scholar 

  66. M. Malakootian, A. Nasiri, A. Asadipour, E. Kargar, Facile and green synthesis of ZnFe2O4@CMC as a new magnetic nanophotocatalyst for ciprofloxacin degradation from aqueous media. Process Saf Environ Prot. 129, 138–151 (2019)

    Article  CAS  Google Scholar 

  67. F. Tamaddon, A. Nasiri, G. Yazdanpanah, Photocatalytic degradation of ciprofloxacin using CuFe2O4@methyl cellulose based magnetic nanobiocomposite. MethodsX. 7, 74–81 (2020)

    Article  Google Scholar 

  68. M. Malakootian, A. Nasiri, H. Mahdizadeh, Metronidazole adsorption on CoFe2O4 /activated carbon@chitosan as a new magnetic biocomposite: Modelling, analysis, and optimization by response surface methodology. Desalin Water Treat. 164, 215–227 (2019)

    Article  CAS  Google Scholar 

  69. X. Chen, J. Cui, X. Xu, B. Sun, L. Zhang, W. Dong et al., Bacterial cellulose/attapulgite magnetic composites as an efficient adsorbent for heavy metal ions and dye treatment. Carbohydr Polym. 229, 115512 (2020)

    Article  CAS  Google Scholar 

  70. Z. Zhang, H. Li, J. Li, X. Li, Z. Wang, X. Liu et al., A novel adsorbent of core-shell construction of chitosan-cellulose magnetic carbon foam: Synthesis, characterization and application to remove copper in wastewater. Chem Phys Lett. 731, 136573 (2019)

    Article  CAS  Google Scholar 

  71. C. Ding, Y. Sun, Y. Wang, J. Li, Y. Lin, W. Sun et al., Adsorbent for resorcinol removal based on cellulose functionalized with magnetic poly(dopamine). Int J Biol Macromol. 99, 578–585 (2017)

    Article  CAS  Google Scholar 

  72. M. Anbia, F. Rahimi, Adsorption of platinum(IV) from an aqueous solution with magnetic cellulose functionalized with thiol and amine as a nano-active adsorbent. J Appl Polym Sci. 134(39), 45361 (2017)

    Article  Google Scholar 

  73. J. Lu, R.-N. Jin, C. Liu, Y.-F. Wang, X.-K. Ouyang, Magnetic carboxylated cellulose nanocrystals as adsorbent for the removal of Pb(II) from aqueous solution. Int J Biol Macromol. 93, 547–556 (2016)

    Article  CAS  Google Scholar 

  74. X. Luo, J. Zeng, S. Liu, L. Zhang, An effective and recyclable adsorbent for the removal of heavy metal ions from aqueous system: Magnetic chitosan/cellulose microspheres. Bioresour Technol. 194, 403–406 (2015)

    Article  CAS  Google Scholar 

  75. Y. Zhou, S. Fu, L. Zhang, H. Zhan, M.V. Levit, Use of carboxylated cellulose nanofibrils-filled magnetic chitosan hydrogel beads as adsorbents for Pb(II). Carbohydr Polym. 101(1), 75–82 (2014)

    Article  CAS  Google Scholar 

  76. X. Sun, L. Yang, Q. Li, J. Zhao, X. Li, X. Wang et al., Amino-functionalized magnetic cellulose nanocomposite as adsorbent for removal of Cr(VI): Synthesis and adsorption studies. Chem Eng J. 241, 175–183 (2014)

    Article  CAS  Google Scholar 

  77. M. El-Sakhawy, S. Kamel, A. Salama, H.-A. Sarhan, Preparation and infrared study of cellulose based amphiphilic materials. Cellul. Chem. Technol. 52, 193 (2018)

    CAS  Google Scholar 

  78. L.T. Cuba-Chiem, L. Huynh, J. Ralston, D.A. Beattie, In situ particle film ATR FTIR spectroscopy of carboxymethyl cellulose adsorption on talc: binding mechanism, pH effects, and adsorption kinetics. Langmuir 24(15), 8036–8044 (2008)

    Article  CAS  Google Scholar 

  79. W. Klunklin, K. Jantanasakulwong, Y. Phimolsiripol, N. Leksawasdi, P. Seesuriyachan, T. Chaiyaso et al., Synthesis, characterization, and application of carboxymethyl cellulose from asparagus stalk end. Polymers (Basel). 13, 81 (2020)

    Article  Google Scholar 

  80. B.-H. Chen, Z.-S. Chao, H. He, C. Huang, Y.-J. Liu, W. Yi et al., Towards a full understanding of the nature of Ni(II) species and hydroxyl groups over highly siliceous HZSM-5 zeolite supported nickel catalysts prepared by a deposition–precipitation method. Dalt Trans. 45, 2720 (2016)

    Article  CAS  Google Scholar 

  81. B. Jeźowska-Trzebiatowska, J. Hanuza, Infrared spectroscopy of oxygen bond systems. J Mol Struct. 19, 109–142 (1973)

    Article  Google Scholar 

  82. N. Nasseh, B. Barikbin, L. Taghavi, M.A. Nasseri, Adsorption of metronidazole antibiotic using a new magnetic nanocomposite from simulated wastewater (isotherm, kinetic and thermodynamic studies). Compos Part B Eng. 159, 146–156 (2019)

    Article  CAS  Google Scholar 

  83. B.D. Zdravkov, J.J. Čermák, M. Šefara, J. Janků, Pore classification in the characterization of porous materials: a perspective. Cent Eur J Chem. 5(2), 385–395 (2007)

    CAS  Google Scholar 

  84. L. Yang, Y. Fan, Y.Q. Gao, Differences of cations and anions: their hydration, surface adsorption, and impact on water dynamics. J Phys Chem B. 115(43), 12456–12465 (2011)

    Article  CAS  Google Scholar 

  85. D. Datta, Ö. Kerkez Kuyumcu, ŞS. Bayazit, S.M. Abdel, Adsorptive removal of malachite green and Rhodamine B dyes on Fe3O4/activated carbon composite. J Dispers Sci Technol. 38(11), 1556–1562 (2017)

    Article  CAS  Google Scholar 

  86. N. Aarah et al., Removal of an emerging pharmaceutical pollutant (metronidazole) using PPY-PANi copolymer: Kinetics, equilibrium and DFT identification of adsorption mechanism. Groundw Sustain Dev. 11, 100416 (2020)

    Article  Google Scholar 

  87. A. Azizi, Green synthesized Fe3O4/cellulose nanocomposite suitable adsorbent for metronidazole removal. Polym Sci - Ser B. 62(5), 572–582 (2020)

    Article  Google Scholar 

  88. M. Malakootian, M.A. Shiri, Investigating the removal of tetracycline antibiotic from aqueous solution using synthesized Fe3 O4 @cuttlebone magnetic nanocomposite. Desalin Water Treat. 221, 343–358 (2021)

    Article  CAS  Google Scholar 

  89. A.H. Nezhad, M. Khodadadi, N. Nasseh, Investigation of the efficiency of powdered and granular magnetic activated carbon nano composites for the adsorption of metronidazole from aqueous solutions (Isotherms and kinetics study). Desalin Water Treat. 198, 248–259 (2020)

    Article  CAS  Google Scholar 

  90. A. Nasiri, M. Malakootian, M.A. Shiri, G. Yazdanpanah, M. Nozari, CoFe2O4@methylcellulose synthesized as a new magnetic nanocomposite to tetracycline adsorption: modeling, analysis, and optimization by response surface methodology. J Polym Res. (2021). https://doi.org/10.1007/s10965-021-02540-y

    Article  Google Scholar 

  91. B. Tang, Y. Lin, P. Yu, Y. Luo, Study of aniline/ɛ-caprolactam mixture adsorption from aqueous solution onto granular activated carbon: Kinetics and equilibrium. Chem Eng J. 187, 69–78 (2012)

    Article  CAS  Google Scholar 

  92. C. Valderrama, J.I. Barios, M. Caetano, A. Farran, J.L. Cortina, Kinetic evaluation of phenol/aniline mixtures adsorption from aqueous solutions onto activated carbon and hypercrosslinked polymeric resin (MN200). React Funct Polym. 70(3), 142–150 (2010)

    Article  CAS  Google Scholar 

  93. E. Asgari, A. Sheikhmohammadi, J. Yeganeh, Application of the Fe3O4-chitosan nano-adsorbent for the adsorption of metronidazole from wastewater: optimization, kinetic, thermodynamic and equilibrium studies. Int J Biol Macromol. 164, 694–706 (2020)

    Article  CAS  Google Scholar 

  94. M. Malakootian, A. Nasiri, H. Mahdizadeh, Preparation of CoFe 2 O 4 /activated carbon@chitosan as a new magnetic nanobiocomposite for adsorption of ciprofloxacin in aqueous solutions. Water Sci Technol. 78(10), 2158–2170 (2018)

    Article  CAS  Google Scholar 

  95. R. Kasraei, M. Malakootian, M. Mohamadi, Synthesis of Fe3O4 nanoparticles @Trioctylmethylammonium thiosalicylat (TOMATS) as a new magnetic nanoadsorbent for adsorption of ciprofloxacin in aqueous solution. Zeitschrift für Phys Chemie. 235(7), 885–908 (2021)

    Article  CAS  Google Scholar 

  96. R. Kasraei, M. Malakootian, Tetracycline adsorption from aqueous solutions by a magnetic nanoadsorbent modified with ionic liquid. Desalin Water Treat. 209, 289–301 (2021)

    Article  CAS  Google Scholar 

  97. R. Li, Z. Wang, X. Zhao, X. Li, X. Xie, Magnetic biochar-based manganese oxide composite for enhanced fluoroquinolone antibiotic removal from water. Environ Sci Pollut Res. 25(31), 31136–31148 (2018)

    Article  CAS  Google Scholar 

  98. M. Malakootian, A. Nasiri, A. Asadipour, M. Faraji, E. Kargar, A facile and green method for synthesis of ZnFe2O4@CMC as a new magnetic nanophotocatalyst for ciprofloxacin removal from aqueous media. MethodsX. 6, 1575–1580 (2019)

    Article  Google Scholar 

  99. J.L. Asensio, A. Ardá, F.J. Cañada, J. Jimenez-Barbero, Carbohydrate–aromatic interactions. Acc Chem Res. 46(4), 946–954 (2013)

    Article  CAS  Google Scholar 

  100. M. Kumari, R.B. Sunoj, P.V. Balaji, Exploration of CH⋯ π mediated stacking interactions in saccharide: aromatic residue complexes through conformational sampling. Carbohydr Res. 361, 133–140 (2012)

    Article  CAS  Google Scholar 

  101. M. Nishio, The CH/π hydrogen bond in chemistry conformation, supramolecules, optical resolution and interactions involving carbohydrates. Phys Chem Chem Phys. 13(31), 13873–13900 (2011)

    Article  CAS  Google Scholar 

  102. J. Rivera-Utrilla, G. Prados-Joya, M. Sánchez-Polo, M.A. Ferro-García, I. Bautista-Toledo, Removal of nitroimidazole antibiotics from aqueous solution by adsorption/bioadsorption on activated carbon. J Hazard Mater. 170(1), 298–305 (2009)

    Article  CAS  Google Scholar 

  103. D.R. Sanvordeker, Y.W. Chien, T.K. Lin, H.J. Lambert, Binding of metronidazole and its derivatives to plasma proteins: an assessment of drug binding phenomenon. J Pharm Sci. 64(11), 1797–1803 (1975)

    Article  CAS  Google Scholar 

  104. J.H. Chen, H. Lin, Z.H. Luo, Y.S. He, G.P. Li, Cu (II)-imprinted porous film adsorbent Cu–PVA–SA has high uptake capacity for removal of Cu (II) ions from aqueous solution. Desalination 277(1–3), 265–273 (2011)

    Article  CAS  Google Scholar 

  105. N. Xiao, L. Wang, H. Wang, S. Wang, T. Zhu, Electron-withdrawing/donating groups (EWG/EDG) modified graphene oxide-oxidized-multiwalled carbon nanotubes and these performances in electrochemistry and adsorption. J Electroanal Chem. 895, 115450 (2021)

    Article  CAS  Google Scholar 

  106. H. Azarpira, D. Balarak, Rice husk as a biosorbent for antibiotic Metronidazole removal: Isotherm studies and model validation. Int J ChemTech Res. 9(7), 566–573 (2016)

    CAS  Google Scholar 

  107. L. Sun, D. Chen, S. Wan, Z. Yu, Adsorption studies of dimetridazole and metronidazole onto biochar derived from sugarcane bagasse: kinetic, equilibrium, and mechanisms. J Polym Environ. 26(2), 765–777 (2018)

    Article  CAS  Google Scholar 

  108. M.M. Soori, E. Ghahramani, H. Kazemian, T.J. Al-Musawi, M. Zarrabi, Intercalation of tetracycline in nano sheet layered double hydroxide: An insight into UV/VIS spectra analysis. J Taiwan Inst Chem Eng. 63, 271–285 (2016)

    Article  CAS  Google Scholar 

  109. Y. Li, Z. Wang, X. Xie, J. Zhu, R. Li, T. Qin, Removal of Norfloxacin from aqueous solution by clay-biochar composite prepared from potato stem and natural attapulgite. Colloids Surfaces A Physicochem Eng Asp. 514, 126–136 (2017)

    Article  CAS  Google Scholar 

  110. S. Aydin, M.E. Aydin, F. Beduk, A. Ulvi, Removal of antibiotics from aqueous solution by using magnetic Fe3O4/red mud-nanoparticles. Sci Total Environ. 670, 539–546 (2019)

    Article  CAS  Google Scholar 

  111. A. Guellati, R. Maachi, T. Chaabane, A. Darchen, M. Danish, Aluminum dispersed bamboo activated carbon production for effective removal of Ciprofloxacin hydrochloride antibiotics: Optimization and mechanism study. J Environ Manage. 301, 113765 (2022)

    Article  CAS  Google Scholar 

  112. N. Dhiman, N. Sharma, Batch adsorption studies on the removal of ciprofloxacin hydrochloride from aqueous solution using ZnO nanoparticles and groundnut (Arachis hypogaea) shell powder: a comparison. Indian Chem Eng. 61(1), 67–76 (2019)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank the Environmental Health Engineering Research Center of Kerman University of Medical Sciences for their financial support. This research with Reg. No. 99000674 was approved by the ethical committee of Kerman University of Medical Sciences. The Ethics approval Code is IR.KMU.REC.1399.578.

Author information

Authors and Affiliations

Authors

Contributions

AN: Project administration, Supervision, MRH and NJ: Investigation, Writing an original draft. GY: Investigation, Validation, Writing, review & editing.

Corresponding author

Correspondence to Ghazal Yazdanpanah.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nasiri, A., Heidari, M.R., Javid, N. et al. New efficient and recyclable magnetic nanohybrid adsorbent for the metronidazole removal from simulated wastewater. J Mater Sci: Mater Electron 33, 25103–25126 (2022). https://doi.org/10.1007/s10854-022-09216-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-09216-3

Navigation