Skip to main content
Log in

Enhanced piezoelectric performance of rare earth complex-doped sandwich-structured electrospun P(VDF-HFP) multifunctional composite nanofiber membranes

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this paper, the electrospinning of Polyvinylidene hexafluoropropylene (P(VDF-HFP)) composite nanofibers was performed by adding rare earth complexes Eu(TTA)3(TPPO)2 and FeCl3·6H2O as fillers. The effects of Eu(TTA)3(TPPO)2 and FeCl3·6H2O fillers on the morphology, crystal structure, thermal properties, and fluorescence properties of P(VDF-HFP) composite nanofibers were investigated by the scanning electron microscopy, Fourier transform infrared spectroscopy, atomic force microscopy, X-ray diffraction, and differential scanning calorimetry and fluorescence. The mechanical properties, sensitivity, ferroelectric properties, and piezoelectric output of monolayer and sandwich structure composite nanofiber membranes used as sensors were studied. The results show that the synergistic effect of double fillers increases the content of β-phase with piezoelectric properties by nearly 20%, reaching 96.9%. The sandwich structure of the PU/P(VDF-HFP)-Eu(TTA)3(TPPO)2-FeCl3·6H2O/PU flexible sensor has high sensitivity (~ 0.29 kPa− 1), high piezoelectric output (~ 3.7 V), high strain (~ 230%), and fluorescence characteristics. It is expected to be applied in wearable flexible sensors, photoelectric devices, and other fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author upon reasonable request.

References

  1. Y. Ding, T. Xu, O. Onyilagha, H. Fong, Z. Zhu, Recent advances in flexible and wearable pressure sensors based on piezoresistive 3D monolithic conductive sponges. ACS Appl. Mater. Interfaces 11, 6685–6704 (2019)

    Article  CAS  Google Scholar 

  2. Y. Badali, S. Koçyiğit, A. Aytimur, Ş Altındal, İ Uslu, Synthesis of boron and rare earth stabilized graphene doped polyvinylidene fluoride (PVDF) nanocomposite piezoelectric materials. Polym. Compos. 40(9), 3623–3633 (2019)

    Article  CAS  Google Scholar 

  3. J. Zhao, F. Li, Z. Wang, P. Dong, G. Xia, K. Wang, Flexible PVDF nanogenerator-driven motion sensors for human body motion energy tracking and monitoring. J. Mater. Sci. Mater. Electron. 32(11), 14715–14727 (2021)

    Article  CAS  Google Scholar 

  4. Y. Guo, J. Xu, W. Wu, S. Liu, J. Zhao, E. Pawlikowska, M. Szafran, F. Gao, Ultralight graphene aerogel/PVDF composites for flexible piezoelectric nanogenerators. Compos. Commun. 22, 100542 (2020)

    Article  Google Scholar 

  5. N. Meng, X. Ren, G. Santagiuliana, L. Ventura, H. Zhang, J. Wu, H. Yan, M.J. Reece, E. Bilotti, Ultrahigh β-phase content poly(vinylidene fluoride) with relaxor-like ferroelectricity for high energy density capacitors. Nat. Commun. 10, 4535 (2019)

    Article  Google Scholar 

  6. J.E. Trevino, S. Mohan, A.E. Salinas, E. Cueva, K. Lozano, Piezoelectric properties of PVDF-conjugated polymer nanofibers. J. Appl. Polym. Sci. 138(28), 50665 (2021)

    Article  CAS  Google Scholar 

  7. Y.X. Zhao, Y.J. Chen, G.X. Pan, C. Wang, C.B. Peng, Z.X. Peng, Z.X. Sun, Y.R. Liang, Q.S. Shi, Preparation and performance of novel Tb-PEG + Eu-PEG/PANI/PAN luminescent-electrical-phase change composite fibers by electrospinning. Chem. J. Chin. Univ. Chin. 40(04), 824–831 (2019)

    CAS  Google Scholar 

  8. C.M. Azzaz, L.H. Mattoso, N.R. Demarquette, R.J. Zednik, Polyvinylidene fluoride nanofibers obtained by electrospinning and blowspinning: Electrospinning enhances the piezoelectric β-phase—myth or reality? J. Appl. Polym. Sci. 138(10), 49959 (2021)

    Article  CAS  Google Scholar 

  9. Z. He, F. Rault, M. Lewandowski, E. Mohsenzadeh, F. Salaun, Electrospun PVDF nanofibers for piezoelectric applications: a review of the influence of electrospinning parameters on the β phase and crystallinity enhancement. Polymers 13, 174 (2021)

    Article  CAS  Google Scholar 

  10. L. Li, M. Zhang, W. Ruan, Studies on synergistic effect of CNT and CB nanoparticles on PVDF. Polym. Compos. 36(12), 2248–2254 (2015)

    Article  CAS  Google Scholar 

  11. B. Zheng, J. Fan, B. Chen, X. Qin, J. Wang, F. Wang, X. Liu, Rare-earth doping in nanostructured inorganic materials. Chem. Rev. 122(6), 5519–5603 (2022)

    Article  CAS  Google Scholar 

  12. V. Varkey, A.R. Chandran, E.T. Jose, I. Paul, G. Jose, Fabrication of photoluminescent electrospun poly (styrene-co-methyl methacrylate) nanofibers integrated with LaPO4: Eu3+ for optical applications. Mater. Today: Proc. 47, 921–926 (2021)

    CAS  Google Scholar 

  13. S. Bose, J.R. Summers, B.B. Srivastava, V. Padilla-Gainza, M. Peredo, C.M.T. De Leo, K. Lozano, Efficient near infrared to visible light upconversion from Er/Yb codoped PVDF fibrous mats synthesized using a direct polymer doping technique. Opt. Mater. 123, 111866 (2022)

    Article  CAS  Google Scholar 

  14. E. Öztürk, E. Karacaoglu, The effect of Eu3+-doping on the photoluminescent properties of REInO3 (RE = Er, Sm) type phosphors. Mater. Today Commun. 25, 101556 (2020)

    Article  Google Scholar 

  15. P. Adhikary, A. Biswas, D. Mandal, Improved sensitivity of wearable nanogenerators made of electrospun Eu3+ doped P(VDF-HFP)/graphene composite nanofibers for self-powered voice recognition. Nanotechnology 27, 495501 (2016)

    Article  Google Scholar 

  16. Y. Li, M.H. Xu, Y.S. Xia, J.M. Wu, X.K. Sun, S. Wang, G.H. Hu, C.X. Xiong, Multilayer assembly of electrospun/electrosprayed PVDF-based nanofibers and beads with enhanced piezoelectricity and high sensitivity. Chem. Eng. J. 388, 124205 (2020)

    Article  CAS  Google Scholar 

  17. C. He, H. Wang, L.X. Huang, P. Wang, W. Gao, Study on morphology features and mechanical properties of nanofibers films prepared by different composite electrospinning methods. Key Eng. Mater. 841, 70–75 (2020)

    Article  Google Scholar 

  18. H. Cui, Y. Li, X. Zhao, X. Yin, J. Yu, B. Ding, Multilevel porous structured polyvinylidene fluoride/polyurethane fibrous membranes for ultrahigh waterproof and breathable application. Compos. Commun. 6, 63–67 (2017)

    Article  Google Scholar 

  19. Q. Gao, B.A.F. Kopera, J. Zhu, X. Liao, C. Gao, M. Retsch, S. Agarwal, A. Greiner, Breathable and flexible polymer membranes with mechanoresponsive electric resistance. Adv. Funct. Mater. 30, 1907555 (2020)

    Article  CAS  Google Scholar 

  20. G. Fu, Q. Shi, Y. He, L. Xie, Y. Liang, Electroactive and photoluminescence of electrospun P(VDF-HFP) composite nanofibers with Eu3+ complex and BaTiO3 nanoparticles. Polymer 240, 124496 (2021)

    Article  Google Scholar 

  21. F. Mokhtari, G.M. Spinks, C. Fay, Z. Cheng, R. Raad, J. Xi, J. Foroughi, Wearable electronic textiles from nanostructured piezoelectric fibers. Adv. Mater. Technol. 5, 1900900 (2020)

    Article  CAS  Google Scholar 

  22. L. Jin, Y. Zheng, Z.K. Liu, J.S. Li, Y.P.Q. Yi, Y.Y. Fan, L.L. Xu, Y. Li, Enhancement of β-phase crystal content of Poly(vinylidene fluoride) nanofiber web by graphene and electrospinning parameters. Chin. J. Polym. Sci. 38(11), 1239–1247 (2020)

    Article  CAS  Google Scholar 

  23. C. Merlini, G.M.O. Barra, T.M. Araujo, A. Pegoretti, Electrically pressure sensitive poly(vinylidene fluoride)/polypyrrole electrospun mats. RSC Adv. 4(30), 15749–15758 (2014)

    Article  CAS  Google Scholar 

  24. M. Khalifa, A. Mahendran, S. Anandhan, Durable, efficient, and flexible piezoelectric nanogenerator from electrospun PANi/HNT/PVDF blend nanocomposite. Polym. Compos. 40(4), 1663–1675 (2019)

    Article  CAS  Google Scholar 

  25. S. Zhang, W. Tong, J. Wang, W. Wang, Z. Wang, Y. Zhang, Modified sepiolite/PVDF-HFP composite film with enhanced piezoelectric and dielectric properties. J. Appl. Polym. Sci. 137(9), 48412 (2020)

    Article  CAS  Google Scholar 

  26. S. Mishra, R. Sahoo, L. Unnikrishnan, A. Ramadoss, S. Mohanty, S.K. Nayak, Enhanced structural and dielectric behaviour of PVDF-PLA binary polymeric blend system. Mater. Today Commun. 26, 101958 (2021)

    Article  CAS  Google Scholar 

  27. H. Shi, M. Al-Rubaiai, C.J. Holbrook, M. Miao, T. Pinto, C. Wang, X. Tan, Screen-printed soft capacitive sensors for spatial mapping of both positive and negative pressures. Adv. Funct. Mater. 29(23), 1809116 (2019)

    Article  Google Scholar 

  28. Q. Hua, J. Sun, H. Liu, R. Bao, R. Yu, J. Zhai, Z.L. Wang, Skin-inspired highly stretchable and conformable matrix networks for multifunctional sensing. Nat. Commun. 9, 244 (2018)

    Article  Google Scholar 

  29. Z. Lei, P. Wu, Zwitterionic skins with a wide scope of customizable functionalities. ACS Nano 12(12), 12860–12868 (2018)

    Article  CAS  Google Scholar 

  30. S. Yu, Y. Zhang, Z. Yu, J. Zheng, Y. Wang, H. Zhou, PANI/PVDF-TrFE porous aerogel bulk piezoelectric and triboelectric hybrid nanogenerator based on in-situ doping and liquid nitrogen quenching. Nano Energy 80, 105519 (2021)

    Article  CAS  Google Scholar 

  31. A. Ahmed, Y. Jia, H. Deb, M.F. Arain, H. Memon, K. Pasha, J. Shao, Ultra-sensitive all organic PVDF-TrFE E-spun nanofibers with enhanced β-phase for piezoelectric response. J. Mater. Sci. Mater. Electron. 33, 3965 (2022)

    Article  CAS  Google Scholar 

Download references

Funding

This study was supported by the National Natural Science Foundation of China (No. 52073033), the fund of the Beijing Municipal Education Commission, China (No. 22019821001), and Beijing excellent talent training fund (No. Z2019-042).

Author information

Authors and Affiliations

Authors

Contributions

GF participated in the data curation, formal analysis, investigation, validation, visualization, and writing of the original draft. YH participated in the data curation and formal analysis. YL contributed to writing, reviewing, & editing of the manuscript. SH participated in the data curation and formal analysis. RX participated in the data curation and formal analysis. YW contributed to writing, reviewing, & editing of the manuscript. WY contributed to writing, reviewing, & editing of the manuscript. QS participated in the supervision, conceptualization, and writing, reviewing, & editing of the manuscript.

Corresponding author

Correspondence to Qisong Shi.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, G., He, Y., Liang, Y. et al. Enhanced piezoelectric performance of rare earth complex-doped sandwich-structured electrospun P(VDF-HFP) multifunctional composite nanofiber membranes. J Mater Sci: Mater Electron 33, 22183–22195 (2022). https://doi.org/10.1007/s10854-022-08998-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-08998-w

Navigation