Skip to main content

Advertisement

Log in

CoAl-Layered double hydroxides coupled with BiOCl as Z-Scheme heterostructure for enhanced photocatalytic removal of antibiotic pollutants under visible light

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

A novel BiOCl/CoAl-LDH direct Z-scheme photocatalyst was successfully designed and fabricated via pH adjustment and solvent thermal method. Owing to the unique energy band structure of BiOCl and CoAl-LDH, the two materials were combined to form a Z-type heterojunctions. Due to the high hydrolysis capacity of Bi3+, the production of composites is regulated by adjusting the pH. The composite with 15% CoAl-LDH (BCA-15) was discovered to have the optimal degradation efficiency by measuring the absorbance. After 140 min of visible light irradiation, 92.49% of tetracycline was degraded. In addition, the BCA-15 composite showed remarkable reusability and stability after five cycles. According to the results of the free radical capture experiment, ·O2 and h+ played essential roles in photocatalytic degradation. Finally, a possible direct Z heterostructure for the degradation of tetracycline was proposed. The composite with 15% CoAl-LDH would be beneficial to the control of water pollution and the treatment of the surrounding environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data Availability

I confirm that a data availability statement in my main manuscript file. I understand that my manuscript and associated personal data will be shared with Research Square for the delivery of the author dashboard.

References

  1. H. Yu, Y. Zhu, A. Hui, F. Yang, A. Wang, Removal of antibiotics from aqueous solution by using porous adsorbent templated from eco-friendly Pickering aqueous foams. J. Environ. Sci. 102, 352–362 (2021). https://doi.org/10.1016/j.jes.2020.09.010

    Article  CAS  Google Scholar 

  2. J. Wang, X. Lei, C. Huang, L. Xue, W. Cheng, Q. Wu, Fabrication of a novel MoO/Zn–Al LDHs composite photocatalyst for efficient degradation of tetracycline under visible light irradiation. J. Phys. Chem. Solids. (2021). https://doi.org/10.1016/j.jpcs.2020.109698

    Article  Google Scholar 

  3. Z. Wei, J. Liu, W. Shangguan, A review on photocatalysis in antibiotic wastewater: Pollutant degradation and hydrogen production. Chin. J. Catal. 41(10), 1440–1450 (2020). https://doi.org/10.1016/S1872-2067(19)63448-0

    Article  CAS  Google Scholar 

  4. X. Yuan, D. Shen, Q. Zhang, H. Zou, Z. Liu, F. Peng, Z-scheme Bi2WO6/CuBi2O4 heterojunction mediated by interfacial electric field for efficient visible-light photocatalytic degradation of tetracycline. Chem. Eng. J. 369, 292–301 (2019). https://doi.org/10.1016/j.cej.2019.03.082

    Article  CAS  Google Scholar 

  5. A.R. Ribeiro, O.C. Nunes, M.F.R. Pereira, A.M.T. Silva, An overview on the advanced oxidation processes applied for the treatment of water pollutants defined in the recently launched Directive 2013/39/EU. Environ. Int. 75, 33–51 (2015). https://doi.org/10.1016/j.envint.2014.10.027

    Article  CAS  Google Scholar 

  6. Y. Wang, K. Ding, R. Xu, D. Yu, W. Wang, P. Gao, B. Liu, Fabrication of BiVO4/BiPO4/GO composite photocatalytic material for the visible light-driven degradation. J Clean. Prod 247, 119108 (2020). https://doi.org/10.1016/j.jclepro.2019.119108

    Article  CAS  Google Scholar 

  7. S. Yin, Y. Chen, Q. Hu, M. Li, Y. Ding, J. Di, J. Xia, H. Li, Construction of NH2-MIL-125(Ti) nanoplates modified Bi2WO6 microspheres with boosted visible-light photocatalytic activity. Res. Chem. Intermed 46(7), 3311–3326 (2020). https://doi.org/10.1007/s11164-020-04132-9

    Article  CAS  Google Scholar 

  8. U. Lamdab, K. Wetchakun, S. Phanichphant, W. Kangwansupamonkon, N. Wetchakun, Correction to: Highly efficient visible light-induced photocatalytic degradation of methylene blue over InVO4/BiVO4 composite photocatalyst. J. Mater. Sci. 56(3), 2795–2796 (2021). https://doi.org/10.1007/s10853-020-05442-4

    Article  CAS  Google Scholar 

  9. Z. Zhu, R. Yang, C. Zhu, C. Hu, B. Liu, Novel Cu-Fe/LDH@BiOI1.5 photocatalyst effectively degrades tetracycline under visible light irradiation. Adv. Powder Technol. 32(7), 2311–2321 (2021). https://doi.org/10.1016/j.apt.2021.05.008

    Article  CAS  Google Scholar 

  10. Y. Shi, X. Xiong, S. Ding, X. Liu, Q. Jiang, J. Hu, In-situ topotactic synthesis and photocatalytic activity of plate-like BiOCl/2D networks Bi2S3 heterostructures. Appl. Catal. B 220, 570–580 (2018). https://doi.org/10.1016/j.apcatb.2017.08.074

    Article  CAS  Google Scholar 

  11. Z. Zha, J. Lai, Y. Li, J. Yang, S. Cui, Y. Li (2021) The degradation of tetracycline by modified BiOCl nanosheets with carbon dots from the chlorella. J. Alloys Compd.https://doi.org/10.1016/j.jallcom.2020.157454 

  12. C. Yu, H. He, X. Liu, J. Zeng, Z. Liu, Novel SiO2 nanoparticle-decorated BiOCl nanosheets exhibiting high photocatalytic performances for the removal of organic pollutants. Chin. J. Catal. 40(8), 1212–1221 (2019). https://doi.org/10.1016/S1872-2067(19)63359-0

    Article  CAS  Google Scholar 

  13. L. Chen, J. Wu, L. Shi, J. Yan, X. Zheng, S. Liao, H. Wang, B. Ou, L. Tian, Flowerlike Bi2O2(OH)NO3/BiOCl nanocomposite with enhance photodegradation activity under simulated sunlight irradiation. J. Mater. Sci.: Mater. Electron. 33(1), 270–282 (2022). https://doi.org/10.1007/s10854-021-07291-6

    Article  CAS  Google Scholar 

  14. J. Guo, L. Wang, X. Wei, Z.A. Alothman, M.D. Albaqami, V. Malgras, Y. Yamauchi, Y. Kang, M. Wang, W. Guan, X. Xu, Direct Z-scheme CuInS2/Bi2MoO6 heterostructure for enhanced photocatalytic degradation of tetracycline under visible light. J. Hazard. Mater. 415, 125591 (2021). https://doi.org/10.1016/j.jhazmat.2021.125591

    Article  CAS  Google Scholar 

  15. J.C. Murillo-Sierra, A. Hernández-Ramírez, Z.-Y. Zhao, A. Martínez-Hernández, M.A. Gracia-Pinilla, Construction of direct Z-scheme WO3/ZnS heterojunction to enhance the photocatalytic degradation of tetracycline antibiotic. J. Environ. Chem. Eng. 9(2), 105111 (2021). https://doi.org/10.1016/j.jece.2021.105111

    Article  CAS  Google Scholar 

  16. G. Zhao, X. Chen, J. Zou, C. Li, L. Liu, T. Zhang, J. Yu, F. Jiao, Activation of Peroxymonosulfate by Fe3O4–CsxWO3/NiAl Layered Double Hydroxide Composites for the Degradation of 2,4-Dichlorophenoxyacetic Acid. Ind. Eng. Chem. Res. 57(48), 16308–16317 (2018). https://doi.org/10.1021/acs.iecr.8b04453

    Article  CAS  Google Scholar 

  17. C. Li, G. Zhao, T. Zhang, T. Yan, C. Zhang, L. Wang, L. Liu, S. Zhou, F. Jiao, A novel Ag@TiON/CoAl-layered double hydroxide photocatalyst with enhanced catalytic memory activity for removal of organic pollutants and Cr(VI). Appl. Surf. Sci. 504, 144352 (2020). https://doi.org/10.1016/j.apsusc.2019.144352

    Article  CAS  Google Scholar 

  18. K. Chen, X. Wang, Q. Li, Y.-N. Feng, F.-F. Chen, Y. Yu, Spatial distribution of ZnIn2S4 nanosheets on g-C3N4 microtubes promotes photocatalytic CO2 reduction. Chem. Eng. J. 418, 129476 (2021). https://doi.org/10.1016/j.cej.2021.129476

    Article  CAS  Google Scholar 

  19. J. Di, X. Zhao, C. Lian, M. Ji, J. Xia, J. Xiong, W. Zhou, X. Cao, Y. She, H. Liu, K.P. Loh, S.J. Pennycook, H. Li, Z. Liu, Atomically-thin Bi2MoO6 nanosheets with vacancy pairs for improved photocatalytic CO2 reduction. Nano Energy 61, 54–59 (2019). https://doi.org/10.1016/j.nanoen.2019.04.029

    Article  CAS  Google Scholar 

  20. A. Chachvalvutikul, T. Luangwanta, S. Pattisson, G.J. Hutchings, S. Kaowphong, Enhanced photocatalytic degradation of organic pollutants and hydrogen production by a visible light–responsive Bi2WO6/ZnIn2S4 heterojunction. Appl. Surf. Sci. 544, 148885 (2021). https://doi.org/10.1016/j.apsusc.2020.148885

    Article  CAS  Google Scholar 

  21. S.-M. Xu, T. Pan, Y.-B. Dou, H. Yan, S.-T. Zhang, F.-Y. Ning, W.-Y. Shi, M. Wei, Theoretical and Experimental Study on MIIMIII-Layered Double Hydroxides as Efficient Photocatalysts toward Oxygen Evolution from Water. J. Phys. Chem. C 119(33), 18823–18834 (2015). https://doi.org/10.1021/acs.jpcc.5b01819

    Article  CAS  Google Scholar 

  22. P. Gholami, A. Khataee, R.D.C. Soltani, L. Dinpazhoh, A. Bhatnagar, Photocatalytic degradation of gemifloxacin antibiotic using Zn-Co-LDH@biochar nanocomposite. J. Hazard. Mater. 382, 121070 (2020). https://doi.org/10.1016/j.jhazmat.2019.121070

    Article  CAS  Google Scholar 

  23. H. Zeng, H. Zhang, L. Deng, Z. Shi, Peroxymonosulfate-assisted photocatalytic degradation of sulfadiazine using self-assembled multi-layered CoAl-LDH/g-C3N4 heterostructures: Performance, mechanism and eco-toxicity evaluation. J. Water Process Eng. 33, 101084 (2020). https://doi.org/10.1016/j.jwpe.2019.101084

    Article  Google Scholar 

  24. H. Liao, T. Luo, P. Tan, K. Chen, L. Lu, Y. Liu, M. Liu, J. Pan, Unveiling Role of Sulfate Ion in Nickel-Iron (oxy)Hydroxide with Enhanced Oxygen-Evolving Performance. Adv. Funct. Mater. 31(38), 2102772 (2021). https://doi.org/10.1002/adfm.202102772

    Article  CAS  Google Scholar 

  25. H. Liao, P. Tan, R. Dong, M. Jiang, X. Hu, L. Lu, Y. Wang, H. Liu, Y. Liu, J. Pan, Insight into the amorphous nickel-iron (oxy)hydroxide catalyst for efficient oxygen evolution reaction. J. Colloid Interface Sci. 591, 307–313 (2021). https://doi.org/10.1016/j.jcis.2021.02.020

    Article  CAS  Google Scholar 

  26. W.K. Jo, S. Tonda, Novel CoAl-LDH/g-C3N4/RGO ternary heterojunction with notable 2D/2D/2D configuration for highly efficient visible-light-induced photocatalytic elimination of dye and antibiotic pollutants. J. Hazard. Mater. 368, 778–787 (2019). https://doi.org/10.1016/j.jhazmat.2019.01.114

    Article  CAS  Google Scholar 

  27. C. Liu, S. Mao, M. Shi, F. Wang, M. Xia, Q. Chen, X. Ju, Peroxymonosulfate activation through 2D/2D Z-scheme CoAl-LDH/BiOBr photocatalyst under visible light for ciprofloxacin degradation. J. Hazard. Mater. 420, 126613 (2021). https://doi.org/10.1016/j.jhazmat.2021.126613

    Article  CAS  Google Scholar 

  28. B. Shao, Z. Liu, L. Tang, Q. Liang, Q. He, T. Wu, Y. Pan, M. Cheng, Y. Liu, X. Tan, J. Tang, H. Wang, H. Feng, S. Tong, Construction of Bi2WO6/CoAl-LDHs S-scheme heterojunction with efficient photo-Fenton-like catalytic performance: Experimental and theoretical studies. Chemosphere 291(Pt 3), 133001 (2022). https://doi.org/10.1016/j.chemosphere.2021.133001

    Article  CAS  Google Scholar 

  29. X. Hong, Y. Li, X. Wang, J. Long, B. Liang, Carbon nanosheet/MnO2/BiOCl ternary composite for degradation of organic pollutants. J. Alloys Compd. 891, 162090 (2022). https://doi.org/10.1016/j.jallcom.2021.162090

    Article  CAS  Google Scholar 

  30. J. Jiang, K. Zhao, X. Xiao, L. Zhang, Synthesis and facet-dependent photoreactivity of BiOCl single-crystalline nanosheets. J. Am. Chem. Soc. 134(10), 4473–4476 (2012). https://doi.org/10.1021/ja210484t

    Article  CAS  Google Scholar 

  31. J. Ma, J. Ding, L. Yu, L. Li, Y. Kong, S. Komarneni, BiOCl dispersed on NiFe–LDH leads to enhanced photo-degradation of Rhodamine B dye. Appl. Clay Sci. 109–110, 76–82 (2015). https://doi.org/10.1016/j.clay.2015.02.009

    Article  CAS  Google Scholar 

  32. L. Mao, H. Liu, L. Yao, W. Wen, M.-M. Chen, X. Zhang, S. Wang, Construction of a dual-functional CuO/BiOCl heterojunction for high-efficiently photoelectrochemical biosensing and photoelectrocatalytic degradation of aflatoxin B1. Chem. Eng. J. 429, 132297 (2022). https://doi.org/10.1016/j.cej.2021.132297

    Article  CAS  Google Scholar 

  33. Y. Jiang, J. Guo, X. Li, G. Wu, M. Mu, X. Yin, Direct Z-scheme 0D/2D heterojunction of CuO quantum Dots/ultrathin CoAl-LDH for boosting charge separation and photocatalytic CO2 reduction. Sol. Energy 231, 705–715 (2022). https://doi.org/10.1016/j.solener.2021.12.001

    Article  CAS  Google Scholar 

  34. J. Tao, X. Yu, Q. Liu, G. Liu, H. Tang, Internal electric field induced S-scheme heterojunction MoS2/CoAl LDH for enhanced photocatalytic hydrogen evolution. J. Colloid Interface Sci. 585, 470–479 (2021). https://doi.org/10.1016/j.jcis.2020.10.028

    Article  CAS  Google Scholar 

  35. Y. Cui, J. Ma, M. Wu, J. Wu, J. Zhang, Y. Xu, Q. Liu, G. Qian, Facet-dependent topo-heterostructure formed by BiOCl and ZnCr-LDH and its enhanced visible-light photocatalytic activity. Sep. Purif. Technol. 254, 117635 (2021). https://doi.org/10.1016/j.seppur.2020.117635

    Article  CAS  Google Scholar 

  36. C. Jing, X. Liu, H. Yao, P. Yan, G. Zhao, X. Bai, B. Dong, F. Dong, S. Li, Y. Zhang, Phase and morphology evolution of CoAl LDH nanosheets towards advanced supercapacitor applications. CrystEngComm 21(33), 4934–4942 (2019). https://doi.org/10.1039/C9CE00905A

    Article  CAS  Google Scholar 

  37. H. Zeng, L. Deng, K. Yang, B. Huang, H. Zhang, Z. Shi, W. Zhang, Degradation of sulfamethoxazole using peroxymonosulfate activated by self-sacrificed synthesized CoAl-LDH@CoFe-PBA nanosheet: Reactive oxygen species generation routes at acidic and alkaline pH. Sep. Purif. Technol. 268, 118654 (2021). https://doi.org/10.1016/j.seppur.2021.118654

    Article  CAS  Google Scholar 

  38. S. Heidari, M. Haghighi, M. Shabani, Ultrasound assisted dispersion of Bi2Sn2O7-C3N4 nanophotocatalyst over various amount of zeolite Y for enhanced solar-light photocatalytic degradation of tetracycline in aqueous solution. Ultrason. Sonochem. 43, 61–72 (2018). https://doi.org/10.1016/j.ultsonch.2018.01.001

    Article  CAS  Google Scholar 

  39. C. Wang, C. Shao, Y. Liu, L. Zhang, Photocatalytic properties BiOCl and Bi2O3 nanofibers prepared by electrospinning. Scripta Mater. 59(3), 332–335 (2008). https://doi.org/10.1016/j.scriptamat.2008.03.038

    Article  CAS  Google Scholar 

  40. J. Cao, C. Zhou, H. Lin, B. Xu, S. Chen, Surface modification of m-BiVO4 with wide band-gap semiconductor BiOCl to largely improve the visible light induced photocatalytic activity. Appl. Surf. Sci. 284, 263–269 (2013). https://doi.org/10.1016/j.apsusc.2013.07.092

    Article  CAS  Google Scholar 

  41. S. Kumar, M.A. Isaacs, R. Trofimovaite, L. Durndell, C.M.A. Parlett, R.E. Douthwaite, B. Coulson, M.C.R. Cockett, K. Wilson, A.F. Lee, P25@CoAl layered double hydroxide heterojunction nanocomposites for CO2 photocatalytic reduction. Appl. Catal. B 209, 394–404 (2017). https://doi.org/10.1016/j.apcatb.2017.03.006

    Article  CAS  Google Scholar 

  42. A.-H. Lee, Y.-C. Wang, C.-C. Chen, Composite photocatalyst, tetragonal lead bismuth oxyiodide/bismuth oxyiodide/graphitic carbon nitride: Synthesis, characterization, and photocatalytic activity. J. Colloid Interface Sci. 533, 319–332 (2019). https://doi.org/10.1016/j.jcis.2018.08.008

    Article  CAS  Google Scholar 

  43. Y. Dou, S. Zhang, T. Pan, S. Xu, A. Zhou, M. Pu, H. Yan, J. Han, M. Wei, D.G. Evans, X. Duan, TiO2@Layered Double Hydroxide Core–Shell Nanospheres with Largely Enhanced Photocatalytic Activity Toward O2 Generation. Adv. Funct. Mater. 25(15), 2243–2249 (2015). https://doi.org/10.1002/adfm.201404496

    Article  CAS  Google Scholar 

  44. C. Yang, G. Zhang, Y. Meng, G. Pan, Z. Ni, S. Xia, Direct Z-scheme CeO2@LDH core–shell heterostructure for photodegradation of Rhodamine B by synergistic persulfate activation. J. Hazard. Mater. 408, 124908 (2021). https://doi.org/10.1016/j.jhazmat.2020.124908

    Article  CAS  Google Scholar 

  45. H. Wang, B. Liao, T. Lu, Y. Ai, G. Liu, Enhanced visible-light photocatalytic degradation of tetracycline by a novel hollow BiOCl@CeO2 heterostructured microspheres: Structural characterization and reaction mechanism. J. Hazard. Mater. 385, 121552 (2020). https://doi.org/10.1016/j.jhazmat.2019.121552

    Article  CAS  Google Scholar 

  46. X. Zhong, K.-X. Zhang, D. Wu, X.-Y. Ye, W. Huang, B.-X. Zhou, Enhanced photocatalytic degradation of levofloxacin by Fe-doped BiOCl nanosheets under LED light irradiation. Chem. Eng. J. 383, 123148 (2020). https://doi.org/10.1016/j.cej.2019.123148

    Article  CAS  Google Scholar 

  47. Y. Yang, Z. Zheng, M. Yang, J. Chen, C. Li, C. Zhang, X. Zhang, In-situ fabrication of a spherical-shaped Zn-Al hydrotalcite with BiOCl and study on its enhanced photocatalytic mechanism for perfluorooctanoic acid removal performed with a response surface methodology. J. Hazard. Mater. 399, 123070 (2020). https://doi.org/10.1016/j.jhazmat.2020.123070

    Article  CAS  Google Scholar 

  48. J. Wu, X. Fang, H. Dong, L. Lian, N. Ma, W. Dai, Bimetallic silver/bismuth-MOFs derived strategy for Ag/AgCl/BiOCl composite with extraordinary visible light-driven photocatalytic activity towards tetracycline. J. Alloys Compd. 877, 160 (2021). https://doi.org/10.1016/j.jallcom.2021.160262

    Article  CAS  Google Scholar 

  49. G. Zhao, L. Liu, C. Li, J. Yu, F. Jiao, Synthesis, characterization and enhanced visible light photocatalytic activity of Bi2WO6/Ni–Al layered double hydroxide composites. J. Mater. Sci.: Mater. Electron. 29(16), 14008–14021 (2018). https://doi.org/10.1007/s10854-018-9533-y

    Article  CAS  Google Scholar 

  50. Y. Wang, L. Wang, Z. Xiao, S. Liu, J. Hu, X. Long, L. Wu, C. Sun, K. Chen, F. Jiao, Construction of Z-scheme heterojunction of (BiO)2CO3/ZnFe-LDH for enhanced photocatalytic degradation of tetracycline. J. Alloys Compd. 877900, 163450 (2022). https://doi.org/10.1016/j.jallcom.2021.163450

    Article  CAS  Google Scholar 

  51. J. Liu, J. Chen, Z. Wu, K. Zhu, J. Wang, Z. Li, G. Tai, X. Liu, S. Lu, Enhanced visible-light photocatalytic performances of ZnO through loading AgI and coupling piezo-photocatalysis. J. Alloys Compd. 852, 156848 (2021). https://doi.org/10.1016/j.jallcom.2020.156848

    Article  CAS  Google Scholar 

  52. J. Low, J. Yu, M. Jaroniec, S. Wageh, A.A. Al-Ghamdi, Heterojunction photocatalysts. Adv. Mater. 29(20), 160 (2017). https://doi.org/10.1002/adma.201601694

    Article  CAS  Google Scholar 

  53. Q. Xu, L. Zhang, J. Yu, S. Wageh, A.A. Al-Ghamdi, M. Jaroniec, Direct Z-scheme photocatalysts: Principles, synthesis, and applications. Mater. Today 21(10), 1042–1063 (2018). https://doi.org/10.1016/j.mattod.2018.04.008

    Article  CAS  Google Scholar 

  54. F. Chen, C. Yu, L. Wei, Q. Fan, F. Ma, J. Zeng, J. Yi, K. Yang, H. Ji, Fabrication and characterization of ZnTiO3/Zn2Ti3O8/ZnO ternary photocatalyst for synergetic removal of aqueous organic pollutants and Cr (VI) ions. Sci. Total Environ. 706, 136026 (2020). https://doi.org/10.1016/j.scitotenv.2019.136026

    Article  CAS  Google Scholar 

  55. L. Chen, L. Shi, J. Wu, Z. Tong, C. Huang, C. Li, B. Ou, C. Peng, L. Tian, J. Tang, N-SrTiO3 nanoparticle/BiOBr nanosheet as 0D/2D heterojunctions for enhanced visible light photocatalytic dye degradation. Mater. Sci. Engineering: B 261, 114667 (2020). https://doi.org/10.1016/j.mseb.2020.114667

    Article  CAS  Google Scholar 

  56. H. Liao, X. Zhang, S. Niu, P. Tan, K. Chen, Y. Liu, G. Wang, M. Liu, J. Pan, Dynamic dissolution and re-adsorption of molybdate ion in iron incorporated nickel-molybdenum oxyhydroxide for promoting oxygen evolution reaction. Appl. Catal. B 307, 121150 (2022). https://doi.org/10.1016/j.apcatb.2022.121150

    Article  CAS  Google Scholar 

  57. C. Yu, F. Chen, D. Zeng, Y. Xie, W. Zhou, Z. Liu, L. Wei, K. Yang, D. Li, A facile phase transformation strategy for fabrication of novel Z-scheme ternary heterojunctions with efficient photocatalytic properties. Nanoscale 11(16), 7720–7733 (2019). https://doi.org/10.1039/C9NR00709A

    Article  CAS  Google Scholar 

  58. A. Zhu, L. Qiao, P. Tan, J. Pan, Interfaces of graphitic carbon nitride-based composite photocatalysts. Inorg. Chem. Front. 7(23), 4754–4793 (2020). https://doi.org/10.1039/D0QI01026J

    Article  CAS  Google Scholar 

Download references

Funding

Funding was provided by The National Natural Science Foundation of China (program no. 21978328).

Author information

Authors and Affiliations

Authors

Contributions

LW Investigation, Methodology, Writing – original draft. YL Investigation. YW Methodology, Writing – review & editing. CS Investigation. GZ Data curation. JH Data curation. XL Conceptualization. HZ Supervision. HW Supervision. Feipeng Jiao:Funding acquisition, Supervision, Writing – review & editing.

Corresponding authors

Correspondence to Hongtao Wu or Feipeng Jiao.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 253.1 kb)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, L., Liu, Y., Wang, Y. et al. CoAl-Layered double hydroxides coupled with BiOCl as Z-Scheme heterostructure for enhanced photocatalytic removal of antibiotic pollutants under visible light. J Mater Sci: Mater Electron 33, 19092–19106 (2022). https://doi.org/10.1007/s10854-022-08746-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-08746-0

Navigation