Skip to main content
Log in

Intensification of iron–boron complex association in silicon solar cells under acoustic wave action

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this paper, we study the influence of ultrasound (US) on the recovery of light-induced degradation in Cz–Si solar cells. The complete recovery in the dark at near room temperature and the determined value of activation energy (0.656 eV) evidenced the iron–boron pair transformation-related degradation. The ability of extraction of FeB pair’s parameters from short circuit current kinetics was discussed. It was revealed that the US loading leads to the acceleration of the FeB pair association. This effect was investigated for different US frequencies (0.3–30 MHz) and intensities (up to 1.3 W/cm\(^2\)) as well as iron concentrations [(0.2–3) × 10\(^{13}\) cm\(^{-3}\)] in the solar cell over temperature range 300–340 K. It has been found that US longitudinal waves are more efficient than transverse waves. The experimentally observed phenomena are related to the decrease in iron migration energy (up to 10 meV) in the US stress fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

Some or all data generated or used during the study are available from the corresponding author by request.

References

  1. S.S. Ostapenko, N.E. Korsunskaya, M.K. Sheinkman, Ultrasound stimulated defect reactions in semiconductors, in Defect Interaction and Clustering in Semiconductors. Solid State Phenomena, vol. 85–86, (Trans Tech Publications, Zürich, 2002), pp. 317–336. https://doi.org/10.4028/www.scientific.net/SSP.85-86.317

    Chapter  Google Scholar 

  2. R.K. Savkina, Recent progress in semiconductor properties engineering by ultrasonication. Recent Patents Electr. Electron. Eng. 6(3), 157–172 (2013). https://doi.org/10.2174/22131116113066660008

    Article  CAS  Google Scholar 

  3. O.Y. Olikh, A.M. Gorb, R.G. Chupryna, O.V. Pristay-Fenenkov, Acousto-defect interaction in irradiated and non-irradiated silicon \(n^+\)\(p\) structure. J. Appl. Phys. 123(16), 161573 (2018). https://doi.org/10.1063/1.5001123

    Article  CAS  Google Scholar 

  4. A. Davletova, S.Z. Karazhanov, Open-circuit voltage decay transient in dislocation-engineered Si p–n junction. J. Phys. D Appl. Phys. 41(16), 165107 (2008). https://doi.org/10.1088/0022-3727/41/16/165107

    Article  CAS  Google Scholar 

  5. Y. Olikh, M. Tymochko, O. Olikh, Mechanisms of two-stage conductivity relaxation in CdTe:Cl with ultrasound. J. Electron. Mater. 49(8), 4524–4530 (2020). https://doi.org/10.1007/s11664-020-08179-7

    Article  CAS  Google Scholar 

  6. O. Olikh, Reversible influence of ultrasound on \(\gamma -\)irradiated Mo/n-Si Schottky barrier structure. Ultrasonics 56, 545–550 (2015). https://doi.org/10.1016/j.ultras.2014.10.008

    Article  CAS  Google Scholar 

  7. O.Y. Olikh, K.V. Voytenko, R.M. Burbelo, Ultrasound influence on I–V–T characteristics of silicon Schottky barrier structure. J. Appl. Phys. 117(4), 044505 (2015). https://doi.org/10.1063/1.4906844

    Article  CAS  Google Scholar 

  8. A.V. Sukach, V.V. Teterkin, Ultrasonic treatment-induced modification of the electrical properties of InAs p–n junctions. Tech. Phys. Lett. 35(6), 514–517 (2009). https://doi.org/10.1134/S1063785009060108

    Article  CAS  Google Scholar 

  9. D. Krüger, B. Romanyuk, V. Melnik, Y. Olikh, R. Kurps, Influence of in situ ultrasound treatment during ion implantation on amorphization and junction formation in silicon. J. Vac. Sci. Technol. B 20(4), 1448–1451 (2002). https://doi.org/10.1116/1.1493784

    Article  CAS  Google Scholar 

  10. B. Romanyuk, V. Melnik, Y. Olikh, V. Popov, D. Krüger, Modification of the Si amorphization process by in situ ultrasonic treatment during ion implantation. Semicond. Sci. Technol. 16(5), 397–401 (2001). https://doi.org/10.1088/0268-1242/16/5/320

    Article  CAS  Google Scholar 

  11. S. Kalem, O. Yavuzcetin, C. Altineller, Effect of light exposure and ultrasound on the formation of porous silicon. J. Porous Mater. 7(1), 381–383 (2000). https://doi.org/10.1023/A:1009687021287

    Article  CAS  Google Scholar 

  12. S. Fujita, K. Kaneko, T. Ikenoue, T. Kawaharamura, M. Furuta, Ultrasonic-assisted mist chemical vapor deposition of II-oxide and related oxide compounds. Phys. Status Solidi C 11(7–8), 1225–1228 (2014). https://doi.org/10.1002/pssc.201300655

    Article  CAS  Google Scholar 

  13. A.A. Istratov, H. Hieslmair, E.R. Weber, Iron and its complexes in silicon. Appl. Phys. A Mater. Sci. Process. 69(1), 13–44 (1999). https://doi.org/10.1007/s003390050968

    Article  CAS  Google Scholar 

  14. M.C. Schubert, M. Padilla, B. Michl, L. Mundt, J. Giesecke, J. Hohl-Ebinger, J. Benick, W. Warta, M. Tajima, A. Ogura, Iron related solar cell instability: Imaging analysis and impact on cell performance. Sol. Energy Mater. Sol. Cells 138, 96–101 (2015). https://doi.org/10.1016/j.solmat.2015.03.001

    Article  CAS  Google Scholar 

  15. H.S. Laine, V. Vähänissi, A.E. Morishige, J. Hofstetter, A. Haarahiltunen, B. Lai, H. Savin, D.P. Fenning, Impact of iron precipitation on phosphorus-implanted silicon solar cells. IEEE J. Photovolt. 6(5), 1094–1102 (2016). https://doi.org/10.1109/JPHOTOV.2016.2576680

    Article  Google Scholar 

  16. V. Vähänissi, A. Haarahiltunen, H. Talvitie, M. Yli-Koski, H. Savin, Impact of phosphorus gettering parameters and initial iron level on silicon solar cell properties. Prog. Photovolt. Res. Appl. 21(5), 1127–1135 (2013). https://doi.org/10.1002/pip.2215

    Article  CAS  Google Scholar 

  17. T. Mchedlidze, C. Möller, K. Lauer, J. Weber, Evolution of iron-containing defects during processing of Si solar cells. J. Appl. Phys. 116(24), 245701 (2014). https://doi.org/10.1063/1.4905027

    Article  CAS  Google Scholar 

  18. T. Bartel, F. Gibaja, O. Graf, D. Gross, M. Kaes, M. Heuer, F. Kirscht, C. Möller, K. Lauer, Dynamics of iron-acceptor-pair formation in co-doped silicon. Appl. Phys. Lett. 103(20), 202109 (2013). https://doi.org/10.1063/1.4830227

    Article  CAS  Google Scholar 

  19. J. Ajayan, D. Nirmal, P. Mohankumar, M. Saravanan, M. Jagadesh, L. Arivazhagan, A review of photovoltaic performance of organic/inorganic solar cells for future renewable and sustainable energy technologies. Superlattices Microstruct. 143, 106549 (2020). https://doi.org/10.1016/j.spmi.2020.106549

    Article  CAS  Google Scholar 

  20. M.A. Green, Photovoltaic technology and visions for the future. Prog. Energy 1(1), 013001 (2019). https://doi.org/10.1088/2516-1083/ab0fa8

    Article  Google Scholar 

  21. S.S. Ostapenko, L. Jastrzebski, J. Lagowski, B. Sopori, Increasing short minority carrier diffusion lengths in solar-grade polycrystalline silicon by ultrasound treatment. Appl. Phys. Lett. 65(12), 1555–1557 (1994). https://doi.org/10.1063/1.112942

    Article  CAS  Google Scholar 

  22. S.S. Ostapenko, R.E. Bell, Ultrasound stimulated dissociation of Fe–B pairs in silicon. J. Appl. Phys. 77(10), 5458–5460 (1995). https://doi.org/10.1063/1.359243

    Article  CAS  Google Scholar 

  23. A.D. Brailsford, Abrupt-kink model of dislocation motion. Phys. Rev. 122(3), 778–786 (1961). https://doi.org/10.1103/PhysRev.122.778

    Article  CAS  Google Scholar 

  24. V.N. Pavlovich, Enhanced diffusion of impurities and defects in crystals in conditions of ultrasonic and radiative excitation of the crystal lattice. Phys. Status Solidi B 180(1), 97–105 (1993). https://doi.org/10.1002/pssb.2221800108

    Article  Google Scholar 

  25. R.M. Peleshchak, O.V. Kuzyk, O.O. Dan’kiv, Formation of periodic structures under the influence of an acousti wave in semiconductors with a two-component defect subsystem. Ukr. J. Phys. 61(8), 741–746 (2016). https://doi.org/10.15407/ujpe61.08.0741

    Article  Google Scholar 

  26. O.Y. Olikh, Acoustically driven degradation in single crystalline silicon solar cell. Superlattices Microstruct. 117, 173–188 (2018). https://doi.org/10.1016/j.spmi.2018.03.027

    Article  CAS  Google Scholar 

  27. W. Wijaranakula, The reaction kinetics of iron–boron pair formation and dissociation in p-type silicon. J. Electrochem. Soc. 140(1), 275–281 (1993). https://doi.org/10.1149/1.2056102

    Article  CAS  Google Scholar 

  28. C. Möller, T. Bartel, F. Gibaja, K. Lauer, Iron–boron pairing kinetics in illuminated p-type and in boron/phosphorus co-doped n-type silicon. J. Appl. Phys. 116(2), 024503 (2014). https://doi.org/10.1063/1.4889817

    Article  CAS  Google Scholar 

  29. J. Tan, D. Macdonald, F. Rougieux, A. Cuevas, Accurate measurement of the formation rate of iron–boron pairs in silicon. Semicond. Sci. Technol. 26(5), 055019 (2011). https://doi.org/10.1088/0268-1242/26/5/055019

    Article  CAS  Google Scholar 

  30. D. Macdonald, T. Roth, P.N.K. Deenapanray, K. Bothe, P. Pohl, J. Schmidt, Formation rates of iron-acceptor pairs in crystalline silicon. J. Appl. Phys. 98(8), 083509 (2005). https://doi.org/10.1063/1.2102071

    Article  CAS  Google Scholar 

  31. J. Lindroos, H. Savin, Review of light-induced degradation in crystalline silicon solar cells. Sol. Energy Mater. Sol. Cells 147, 115–126 (2016). https://doi.org/10.1016/j.solmat.2015.11.047

    Article  CAS  Google Scholar 

  32. A. Schmid, C. Fischer, D. Skorka, A. Herguth, C. Winter, A. Zuschlag, G. Hahn, On the role of AlO\(_x\) thickness in AlO\(_x\)/SiN\(_y\): H layer stacks regarding light- and elevated temperature-induced degradation and hydrogen diffusion in c-Si. IEEE J. Photovolt. 11(4), 967–973 (2021). https://doi.org/10.1109/JPHOTOV.2021.3075850

    Article  Google Scholar 

  33. M. Wagner, F. Wolny, M. Hentsche, A. Krause, L. Sylla, F. Kropfgans, M. Ernst, R. Zierer, P. Bönisch, P. Müller, N. Schmidt, V. Osinniy, H.-P. Hartmann, R. Mehnert, H. Neuhaus, Correlation of the LeTID amplitude to the Aluminium bulk concentration and Oxygen precipitation in PERC solar cells. Sol. Energy Mater. Sol. Cells 187, 176–188 (2018). https://doi.org/10.1016/j.solmat.2018.06.009

    Article  CAS  Google Scholar 

  34. D. Chen, M. Kim, B.V. Stefani, B.J. Hallam, M.D. Abbott, C.E. Chan, R. Chen, D.N.R. Payne, N. Nampalli, A. Ciesla, T.H. Fung, K. Kim, S.R. Wenham, Evidence of an identical firing-activated carrier-induced defect in monocrystalline and multicrystalline silicon. Sol. Energy Mater. Sol. Cells 172, 293–300 (2017). https://doi.org/10.1016/j.solmat.2017.08.003

    Article  CAS  Google Scholar 

  35. A. Fahrenbruch, R. Bube, Fundamentals of Solar Cells: Photovoltaic Solar Energy Conversion (Academic Press, London, Paris, 1983), p. 580

    Google Scholar 

  36. M. Razeghi, A. Rogalski, Semiconductor ultraviolet detectors. J. Appl. Phys. 79(10), 7433–7473 (1996). https://doi.org/10.1063/1.362677

    Article  CAS  Google Scholar 

  37. K. Rajkanan, R. Singh, J. Shewchun, Absorption coefficient of silicon for solar cell calculations. Solid-State Electron. 22(9), 793–795 (1979). https://doi.org/10.1016/0038-1101(79)90128-X

    Article  CAS  Google Scholar 

  38. M.A. Green, M.J. Keevers, Optical properties of intrinsic silicon at 300 k. Progr. Photovolt. Res. Appl. 3(3), 189–192 (1995). https://doi.org/10.1002/pip.4670030303

    Article  CAS  Google Scholar 

  39. N.I. Klyui, V.P. Kostylyov, A.G. Rozhin, V.I. Gorbulik, V.G. Litovchenko, M.A. Voronkin, N.I. Zaika, Silicon solar cells with antireflecting and protective coatings based on diamond-like carbon and silicon carbide films. Opto-Electr. Rev. 8(4), 402–405 (2000)

    Google Scholar 

  40. V.G. Litovchenko, N.I. Klyui, V.P. Kostylyov, V.I. Gorbulik, Y.P. Piryatinskii, Nitrogen containing diamond-like carbon films as protective and fluorescent layers for silicon solar cells. Opto-Electr. Rev. 8(4), 406–409 (2000)

    Google Scholar 

  41. D.B.M. Klaassen, A unified mobility model for device simulation—I. Model equations and concentration dependence. Solid-State Electron. 35(7), 953–959 (1992). https://doi.org/10.1016/0038-1101(92)90325-7

    Article  CAS  Google Scholar 

  42. H.T. Nguyen, S.C. Baker-Finch, D. Macdonald, Temperature dependence of the radiative recombination coefficient in crystalline silicon from spectral photoluminescence. Appl. Phys. Lett. 104(11), 112105 (2014). https://doi.org/10.1063/1.4869295

    Article  CAS  Google Scholar 

  43. P.P. Altermatt, J. Schmidt, G. Heiser, A.G. Aberle, Assessment and parameterisation of Coulomb-enhanced Auger recombination coefficients in lowly injected crystalline silicon. J. Appl. Phys. 82(10), 4938–4944 (1997). https://doi.org/10.1063/1.366360

    Article  CAS  Google Scholar 

  44. R. Couderc, M. Amara, M. Lemiti, Reassessment of the intrinsic carrier density temperature dependence in crystalline silicon. J. Appl. Phys. 115(9), 093705 (2014). https://doi.org/10.1063/1.4867776

    Article  CAS  Google Scholar 

  45. M.A. Green, Intrinsic concentration, effective densities of states, and effective mass in silicon. J. Appl. Phys. 67(6), 2944–2954 (1990). https://doi.org/10.1063/1.345414

    Article  CAS  Google Scholar 

  46. F.E. Rougieux, C. Sun, D. Macdonald, Determining the charge states and capture mechanisms of defects in silicon through accurate recombination analyses: a review. Sol. Energy Mater. Sol. Cells 187, 263–272 (2018). https://doi.org/10.1016/j.solmat.2018.07.029

    Article  CAS  Google Scholar 

  47. J.D. Murphy, K. Bothe, M. Olmo, V.V. Voronkov, R.J. Falster, The effect of oxide precipitates on minority carrier lifetime in p-type silicon. J. Appl. Phys. 110(5), 053713 (2011). https://doi.org/10.1063/1.3632067

    Article  CAS  Google Scholar 

  48. A.W. Mohamed, A.A. Hadi, K.M. Jambi, Novel mutation strategy for enhancing SHADE and LSHADE algorithms for global numerical optimization. Swarm Evol. Comput. 50, 100455 (2019). https://doi.org/10.1016/j.swevo.2018.10.006

    Article  Google Scholar 

  49. G. Zoth, W. Bergholz, A fast, preperetion-free method to detect iron in silicon. J. Appl. Phys. 67(11), 6764–6771 (1990). https://doi.org/10.1063/1.345063

    Article  CAS  Google Scholar 

  50. D. Macdonald, A. Cuevas, L.J. Geerligs, Measuring dopant concentrations in compensated p-type crystalline silicon via iron-acceptor pairing. Appl. Phys. Lett. 92(20), 202119 (2008). https://doi.org/10.1063/1.2936840

    Article  CAS  Google Scholar 

  51. N. Khelifati, H.S. Laine, V. Vähänissi, H. Savin, F.Z. Bouamama, D. Bouhafs, Dissociation and formation kinetics of iron–boron pairs in silicon after phosphorus implantation gettering. Phys. Status Solidi A 216(17), 1900253 (2019). https://doi.org/10.1002/pssa.201900253

    Article  CAS  Google Scholar 

  52. M.J. Aziz, Stress effects on defects and dopant diffusion in Si. Mater. Sci. Semicond. Process. 4(5), 397–403 (2001). https://doi.org/10.1016/S1369-8001(01)00014-2

    Article  CAS  Google Scholar 

  53. M. Stavola (ed.), Identification of Defects in Semiconductors (Academic Press, San Diego, 1998)

    Google Scholar 

  54. E.R. Weber, Transition metals in silicon. Appl. Phys. A 30(1), 1–22 (1983). https://doi.org/10.1007/BF00617708

    Article  Google Scholar 

  55. S. Ostapenko, Defect passivation using ultrasound treatment: fundamentals and application. Appl. Phys. A Mater. Sci. Process. 69(2), 225–232 (1999). https://doi.org/10.1007/s003390050994

    Article  CAS  Google Scholar 

  56. B.N. Zaveryukhin, N.N. Zaveryukhina, O.M. Tursunkulov, Variation of the reflection coefficient of semiconductors in a wavelength range from 0.2 to 20 \(\mu\)m under the action of ultrasonic waves. Tech. Phys. Lett. 28(9), 752–756 (2002). https://doi.org/10.1134/1.1511774

    Article  CAS  Google Scholar 

  57. B. Ziebarth, M. Mrovec, C. Elsässer, P. Gumbsch, Influence of dislocation strain fields on the diffusion of interstitial iron impurities in silicon. Phys. Rev. B 92, 115309 (2015). https://doi.org/10.1103/PhysRevB.92.115309

    Article  CAS  Google Scholar 

  58. A.M. Gorb, O.A. Korotchenkov, O.Y. Olikh, A.O. Podolian, R.G. Chupryna, Influence of \(\gamma\)-irradiation and ultrasound treatment on current mechanism in Au–SiO\(_2\)–Si structure. Solid-State Electron. 165, 107712 (2020). https://doi.org/10.1016/j.sse.2019.107712

    Article  CAS  Google Scholar 

  59. D. Kropman, V. Seeman, S. Dolgov, A. Medvids, Effect of ultrasonic treatment on the defect structure of the Si–SiO\(_2\) system. Phys. Status Solidi C 13(10–12), 793–797 (2016). https://doi.org/10.1002/pssc.201600052

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by National Research Foundation of Ukraine (Project Number 2020.02/0036).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to this work.

Corresponding author

Correspondence to Oleg Olikh.

Ethics declarations

Conflict of interest

There are no conflict to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Olikh, O., Kostylyov, V., Vlasiuk, V. et al. Intensification of iron–boron complex association in silicon solar cells under acoustic wave action. J Mater Sci: Mater Electron 33, 13133–13142 (2022). https://doi.org/10.1007/s10854-022-08252-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-08252-3

Navigation