Skip to main content

Advertisement

Log in

CoS2 nanoparticles grown in situ on rGO nanosheet as a potential anode material toward high-performance sodium-ion hybrid capacitors

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Sodium-ion hybrid capacitors (SICs) as promising energy conversion and storage devices have exhibited excellent specific energy, high specific power, and good cycling life. Nevertheless, anode materials for SICs suffer from terrible volume expansion and sluggish reaction kinetics owing to the larger radius of sodium-ion. To find suitable anode materials, we design and prepare reduced graphene oxide-supported CoS2 nanoparticles (CoS2/rGO) with high electrochemical performance through a facile hydrothermal method. When tested as anode materials, the specific capacity of CoS2/rGO delivers 529.3 and 1168.6 mA h g−1 in the process of the 1st charge and discharge, respectively. Moreover, the specific capacity retention is up to 214.8 mA h g−1 at 100 mA g−1 over 100 cycles. In order to explore the practical application of CoS2/rGO, SICs are assembled by biomass-derived porous carbon cathodes and CoS2/rGO anodes, which displays remarkable specific energy of 112.6, 103.75, 91.29, 70.34, 47.45 W h kg−1 under specific power 225, 449.82, 899.86, 1350, 2689.3 W kg−1, respectively, benefiting from the high pseudocapacitive performance of CoS2/rGO anodes and outstanding specific capacity of biomass-derived porous carbon cathodes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. J.M. Tarascon, M. Armand, Issues and challenges facing rechargeable lithium batteries. Nature 414, 359–367 (2001)

    Article  CAS  Google Scholar 

  2. Y.G. Guo, J.S. Hu, L.J. Wan, ChemInform abstract: nanostructured materials for electrochemical energy conversion and storage devices. Adv. Mater. 20, 2878–2887 (2008)

    Article  CAS  Google Scholar 

  3. H.X. Li, J.W. Lang, S.L. Lei, J.T. Chen, K.J. Wang, L.Y. Liu, T.Y. Zhang, W.S. Liu, X.B. Yan, A high-performance sodium-ion hybrid capacitor constructed by metal-organic framework-derived anode and cathode materials. Adv. Func. Mater. 28, 1800757 (2018)

    Article  Google Scholar 

  4. M. Wang, Y. Yang, Z.Z. Yang, L. Gu, Q.W. Chen, Y. Yu, Sodium-ion batteries: improving the rate capability of 3D interconnected carbon nanofibers thin film by boron, nitrogen dual-doping. Adv Sci 4, 1600468 (2017)

    Article  Google Scholar 

  5. J. Wang, L. Yan, Q.J. Ren, L.L. Fan, F.M. Zhang, Z.Q. Shi, Facile hydrothermal treatment route of reed straw-derived hard carbon for high performance sodium ion battery. Electrochim. Acta 291, 188–196 (2018)

    Article  CAS  Google Scholar 

  6. W.J. Tang, Y.F. Zhang, Y. Zhong, T. Shen, X.L. Wang, X.H. Xia, J.P. Tu, Natural biomass-derived carbons for electrochemical energy storage. Mater. Res. Bull. 88, 234–241 (2017)

    Article  CAS  Google Scholar 

  7. F. Zhang, J.J. Zhu, D.L. Zhang et al., Two-dimensional SnO anodes with a tunable number of atomic layers for sodium ion batteries. Nano Lett. 17, 1302–1311 (2017)

    Article  CAS  Google Scholar 

  8. H.L. Pan, Y.S. Hu, L.Q. Chen, Room-temperature stationary sodium-ion batteries for large-Scale electric energy storage. Energy Environ. Sci. 6, 2338–2360 (2013)

    Article  CAS  Google Scholar 

  9. Y. Wen, K. He, Y. Zhu, F. Han, Y. Xu, I. Matsuda, Y. Ishii, J. Cumings, C. Wang, Expanded graphite as superior anode for sodium-ion batteries. Nat. Commun. 5, 4033 (2014)

    Article  CAS  Google Scholar 

  10. Y. Zhang, Q. Zhou, J.X. Zhu, Q.Y. Yan, Dou, S.X. Sun, Nanostructured metal chalcogenides for energy storage and electrocatalysis. Adv. Func. Mater. 27, 1702317 (2017)

    Article  Google Scholar 

  11. S.R. Dai, L.C. Wang, M.L. Cao, Z.C. Zhong, Y. Shen, M.K. Wang, Design strategies in metal chalcogenides anode materials for high-performance sodium-ion battery. Mater. Today Energy 12, 114–128 (2019)

    Article  Google Scholar 

  12. P.B. Geng, S.S. Zheng, H. Tang, R.M. Zhu, L. Zhang, S. Cao, H.G. Xue, H. Pang, Transition metal sulfides based on graphene for electrochemical energy storage. Adv. Energy Mater. 8, 1703259 (2018)

    Article  Google Scholar 

  13. J.B. Li, D. Yan, X.J. Zhang, S.J. Hou, D.S. Li, T. Lu, Y.F. Yao, L.K. Pan, In situ growth of Sb2S3 on multiwalled carbon nanotubes as high-performance anode materials for sodium-ion batteries. Electrochim. Acta 228, 436–446 (2017)

    Article  CAS  Google Scholar 

  14. S.N. Liu, Z.Y. Cai, J. Zhou, M.N. Zhu, A.Q. Pan, High-performance sodium-ion batteries and flexible sodium-ion capacitors based on Sb2X3 (X = O, S) /carbon fiber cloth. J. Mater. Chem. A 5, 9169–9176 (2017)

    Article  CAS  Google Scholar 

  15. B. Qu, C. Ma, G. Ji, C. Xu, J. Xu, Y.S. Meng, T. Wang, J.Y. Lee, layered SnS2-reduced graphene oxide composite-a high-capacity, high-rate, and long-cycle life sodium-ion battery anode material. Adv. Mater. 26, 3854–3859 (2014)

    Article  CAS  Google Scholar 

  16. J.M. Yan, H.Z. Huang, J. Zhang, Z.J. Liu, Y. Yang, A study of novel anode material CoS2 for lithium ion battery. J. Power Sources 146, 264–269 (2005)

    Article  CAS  Google Scholar 

  17. B. Qiu, X. Zhao, D. Xia, In situ synthesis of CoS2/RGO nanocomposites with enhanced electrode performance for lithium-ion batteries. J. Alloys Compd. 579, 372–376 (2013)

    Article  CAS  Google Scholar 

  18. L. Li, Z. Guo, A. Du, H. Liu, Rapid microwave-assisted synthesis of Mn3O4-graphene nanocomposite and its lithium storage properties. J. Mater. Chem. A 22, 3600–3605 (2012)

    Article  CAS  Google Scholar 

  19. D.C. Marcano, D.V. Kosynkin, J.M. Berlin, A. Sinitskii, Z. Sun, A.S. Slesarev, L.B. Alemany, W. Lu, J.M. Tour, Improved synthesis of graphene oxide. ACS Nano 12, 2078 (2018)

    Article  CAS  Google Scholar 

  20. I.K. Moon, J. Lee, R.S. Ruoff, H. Lee, Reduced graphene oxide by chemical graphitization. Nat. Commun. 1, 1067 (2010)

    Article  Google Scholar 

  21. Y.A. Niu, Q.H. Fang, X. Zhang, P.P. Zhang, Y. Li, Reduction and structural evolution of graphene oxide sheets under hydrothermal treatment. Phys. Lett. A 380, 3128–3132 (2016)

    Article  CAS  Google Scholar 

  22. Y. Du, X. Zhu, X. Zhou, L. Hu, Z. Dai, J. Bao, Co3S4 porous nanosheets embedded in graphene sheets as high-performance anode materials for lithium and sodium storage. J. Mater. Chem. A 3, 6787–6791 (2015)

    Article  CAS  Google Scholar 

  23. Y.P. Zhu, X.M. Xu, G. Chen, Y.J. Zhong, R. Cai, L. Li, Z.P. Shao, Surfactant-free self-assembly of reduced graphite oxide-MoO2 nanobelt composites used as electrode for lithium-ion batterie. Electrochim. Acta 211, 972–981 (2016)

    Article  CAS  Google Scholar 

  24. L. Zhu, D. Susac, M. Teo, K.C. Wong, P.C. Wong, R.R. Parsons, D. Bizzotto, K.A.R. Mitchell, S.A. Campbell, Investigation of CoS2-based thin films as model catalysts for the oxygen reduction reaction. J. Catal. 258, 235–242 (2008)

    Article  CAS  Google Scholar 

  25. X.J. Shi, B.B. He, L. Zhao, Y.S. Gong, R. Wang, H.W. Wang, FeS2-CoS2 incorporated into nitrogen-doped carbon nanofibers to boost oxygen electrocatalysis for durable rechargeable Zn-air batteries. J. Power Sources 482, 228955 (2021)

    Article  CAS  Google Scholar 

  26. K.Y. Xie, L. Li, D. Xiang, W. Zhou, Z.P. Shao, A strongly coupled CoS2/reduced graphene oxide nanostructure as an anode material for efficient sodium-ion batteries. J. Alloys Compd. 726, 394–402 (2017)

    Article  CAS  Google Scholar 

  27. L. Dan, M.B. Mueller, S. Gilje, R.B. Kaner, G.G. Wallace, Processable aqueous dispersions of graphene nanosheets. Nat. Nanotechnol. 3, 101–105 (2008)

    Article  Google Scholar 

  28. Z.W. Li, W.J. Feng, Y.Q. Lin, X. Liu, H.L. Fei, Flaky CoS2 and graphene nanocomposite anode materials for sodium-ion batteries with improved performance. RSC Adv. 6, 70632–70637 (2016)

    Article  CAS  Google Scholar 

  29. G.S. Chen, X. Yao, Q.C. Cao, S.X. Ding, J.D. He, S.Q. Wang, Flexible free-standing SnS2/carbon nanofibers anode for high performance sodium-ion batteries. Mater. Lett. 234, 121–124 (2019)

    Article  CAS  Google Scholar 

  30. E. Radvanyi, K.V. Havenbergh, W. Porcher, S. Jouanneau, Study and modeling of the solid electrolyte interphase behavior on nano-silicon anodes by Electrochemical impedance spectroscopy. Electrochim. Acta 137, 439–446 (2014)

    Article  Google Scholar 

  31. J. Liu, Y.G. Xu, L.B. Kong, Synthesis of polyvalent ion reaction of MoS2/CoS2-RGO anode materials for high-performance sodium-ion batteries and sodium-ion capacitors. J. Colloid Interface Sci. 575, 42–53 (2020)

    Article  CAS  Google Scholar 

  32. Y.X. Guo, L.F. Gan, C.S. Shang, E.K. Wang, J. Wang, A cake-style CoS2@MoS2/RGO hybrid catalyst for efficient hydrogen evolution. Adv. Func. Mater. 27, 1602699 (2017)

    Article  Google Scholar 

  33. X.Y. Shen, D.B. Mu, S. Chen, B.R. Wu, F. Wu, Enhanced electrochemical performance of ZnO-loaded/porous carbon composite as anode materials for lithium ion batteries. ACS Appl. Mater. Interfaces. 8, 3118–3125 (2013)

    Article  Google Scholar 

  34. G. Huang, S. Xu, S. Lu, L. Li, H. Sun, Micro-/nanostructured Co3O4 anode with enhanced rate capability for lithium-ion batteries. ACS Appl. Mater. Interfaces. 6, 7236–7243 (2014)

    Article  CAS  Google Scholar 

  35. C.N. He, S.H. Wu, N.Q. Zhao, C.S. Shi, E.Z. Liu, J.J. Li, Carbon-encapsulated Fe3O4 nanoparticles as a high-rate lithium ion battery anode material. ACS Nano 5, 4459–4469 (2013)

    Article  Google Scholar 

  36. H.S. Hou, C.E. Banks, M.J. Jing, Y. Zhang, X.B. Ji, Sodium-ion batteries: carbon quantum dots and their derivative 3D porous carbon frameworks for sodium-ion batteries with ultralong cycle life. Adv. Mater. 27, 7861–7866 (2015)

    Article  CAS  Google Scholar 

  37. H. Liu, X. Chen, L. Deng, X. Su, K. Guo, Z. Zhu, Preparation of ultrathin 2D MoS2/graphene heterostructure assembled foam-like structure with enhanced electrochemical performance for lithium-ion batteries. Electrochim. Acta 206, 184–191 (2016)

    Article  CAS  Google Scholar 

  38. Y. Wang, D. Su, C. Wang, G. Wang, SnO2@MWCNT nanocomposite as a high capacity anode material for sodium-ion batteries. Electrochem. Commun. 29, 8–11 (2013)

    Article  CAS  Google Scholar 

  39. X. Zhao, H.E. Wang, R.C. Massé, J. Cao, J. Sui, J. Li, W. Cai, G. Cao, Design of coherent anode materials with 0D Ni3S2 nanoparticles self-assembled on 3D interconnected carbon networks for fast and reversible sodium storage. J. Mater. Chem. A 5, 7394–7402 (2017)

    Article  CAS  Google Scholar 

  40. H. Tao, M. Zhou, K. Wang, S. Cheng, K. Jiang, Nickel sulfide nanospheres anchored on reduced graphene oxide in situ doped with sulfur as a high performance anode for sodium-ion batteries. J. Mater. Chem. A 5, 9322–9328 (2017)

    Article  CAS  Google Scholar 

  41. Y.F. Zhang, A.Q. Pan, A.L. Ding, Z. Zhou, Y. Wang, S. Niu, S. Liang, G. Cao, Nitrogen-doped yolk-shell-structured CoSe/C dodecahedra for high-performance sodium ion batteries. ACS Appl. Mater. Interfaces. 9, 3624–3633 (2017)

    Article  CAS  Google Scholar 

  42. S. Peng, X. Han, L. Li, Z. Zhu, F. Cheng, M. Srinivansan, S. Adams, S. Ramakrishna, Unique cobalt sulfide/reduced graphene oxide composite as an anode for sodium-ion batteries with superior rate capability and long cycling stability. Small 12, 1359–1368 (2016)

    Article  CAS  Google Scholar 

  43. T. Wang, P. Hu, C. Zhang, H. Du, Z. Zhang, X. Wang, S. Chen, J. Xiong, G. Cui, Nickel disulfide-graphene nanosheets composites with improved electrochemical performance for sodium ion battery. ACS Appl. Mater. Interfaces. 8, 7811–7817 (2016)

    Article  CAS  Google Scholar 

  44. C. Zhao, C. Yu, M. Zhang, H. Huang, S. Li, X. Han, Z. Liu, J. Yang, W. Xiao, J. Liang, X. Sun, J. Qiu, Ultrafine MoO2-carbon microstructures enable ultralong-life power-type sodium ion storage by enhanced pseudocapacitance. Adv. Energy Mater. 7, 1602880 (2017)

    Article  Google Scholar 

  45. Z. Chen, R. Wu, H. Wang, Y. Jiang, L. Jin, Y. Guo, Y. Song, F. Fang, D. Sun, Construction of hybrid hollow architectures by in-situ rooting ultrafine ZnS nanorods within porous carbon. Chem. Eng. J. 326, 680–690 (2017)

    Article  CAS  Google Scholar 

  46. L.J. Fu, K. Tang, K.P. Song, P.A. van Aken, Y. Yu, J. Maier, Nitrogen doped porous carbon fibres as anode materials for sodium ion batteries with excellent rate performance. Nanoscale 6, 1384–1389 (2014)

    Article  CAS  Google Scholar 

  47. D. Su, K. Kretschmer, G. Wang, Improved electrochemical performance of Na-ion batteries in ether-based electrolytes: A case study of ZnS nanospheres. Adv. Energy Mater. 6, 1501785 (2016)

    Article  Google Scholar 

  48. C. Yang, J.G. Ren, M.S. Zheng, M.Y. Zhang, Z. Zhong, R.Q. Liu, J. Huang, J.L. Lan, Y.H. Yu, X.P. Yang, High-level N/P co-doped Sn-carbon nanofibers with ultrahigh pseudocapacitance for high-energy lithium-ion and sodium-ion capacitors. Electrochim. Acta 359, 136898 (2020)

    Article  CAS  Google Scholar 

  49. Z.J. Li, D.F. Guo, Y.Y. Liu, H.Y. Wang, L.L. Wang, Recent advances and challenges in biomass-derived porous carbon nanomaterials for supercapacitors. Chem. Eng. J. 397, 125418 (2020)

    Article  CAS  Google Scholar 

  50. S. Men, J.J. Lin, Y. Zhou, X.W. Kang, N-doped porous carbon wrapped FeSe2 nanoframework prepared by spray drying: A potential large-scale production technique for high-performance anode materials of sodium ion batteries. J. Power Sources 485, 229310 (2021)

    Article  CAS  Google Scholar 

  51. A. Banerjee, K.K. Upadhyay, D. Puthusseri, V. Aravindan, S. Madhavi, S. Ogale, MOF-derived crumpled-sheet-assembled perforated carbon cuboids as highly effective cathode active materials for ultra-high energy density Li-ion hybrid electrochemical capacitors (Li-HECs). Nanoscale 6, 4387–4394 (2014)

    Article  CAS  Google Scholar 

  52. X. Tao, J. Du, Y. Sun, S. Zhou, Y. Xia, H. Huang, Y. Gan, W. Zhang, X. Li, Exploring the energy storage mechanism of high performance MnO2 electrochemical capacitor electrodes: an in situ atomic force microscopy study in aqueous electrolyte. Adv. Func. Mater. 23, 4745–4751 (2013)

    CAS  Google Scholar 

  53. H. Zhang, R.J. Bai, C. Lu, J. Li, Y.G. Xu, L.B. Kong, M.C. Liu, RGO-modified CoWO4 nanoparticles as new high-performance electrode materials for sodium-ion storage. Ionics 25, 533–540 (2019)

    Article  CAS  Google Scholar 

  54. M.C. Liu, J. Li, Q.Q. Yang, Y. Xu, L.B. Kong, R.J. Bai, W.W. Liu, W.J. Niu, Y.L. Chueh, Hierarchically interconnected Ni3S2 nanofibers as binder-free electrodes for high-performance sodium-ion energy-storage devices. ACS Appl. Nano Mater. 5, 2634–2641 (2019)

    Article  Google Scholar 

  55. Z. Chen, V. Augustyn, X.L. Jia, Q.F. Xiao, B. Dunn, Y.F. Lu, High-performance sodium-ion pseudocapacitors based on hierarchically porous nanowire composites. ACS Nano 6, 4319–4327 (2012)

    Article  CAS  Google Scholar 

  56. H.G. Jung, N. Venugopal, B. Scrosati, A high energy and power density hybrid supercapacitor based on an advanced carbon-coated Li4Ti5O12 electrode. J. Power Sources 221, 266–271 (2013)

    Article  CAS  Google Scholar 

  57. K. Karthikeyan, S. Amaresh, S.N. Lee, V. Aravindan, Y.S. Lee, Fluorine-doped Fe(2)O(3) as high energy density electroactive material for hybrid supercapacitor applications. Chemistry 9, 852–857 (2014)

    CAS  Google Scholar 

  58. Z.Y. Le, F. Liu, P. Nie, X.R. Li, X.Y. Liu, Z.F. Bian, G. Chen, H.B. Wu, Y.F. Lu, Pseudocapacitive sodium storage in mesoporous single-crystal-like TiO2-graphene nanocomposite enables high-performance sodium-ion capacitors. ACS Nano 11, 2952–2960 (2017)

    Article  CAS  Google Scholar 

  59. M.S. Kim, E. Lim, S. Kim, C. Jo, J. Chun, J. Le, General synthesis of N-doped macroporous graphene-encapsulated mesoporous metal oxides and their application as new anode materials for sodium-ion hybrid supercapacitors. Adv. Func. Mater. 27, 1603921–1603929 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 51971104 and 51762031).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ling-Bin Kong.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 338 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, YG., Liu, J. & Kong, LB. CoS2 nanoparticles grown in situ on rGO nanosheet as a potential anode material toward high-performance sodium-ion hybrid capacitors. J Mater Sci: Mater Electron 32, 15251–15264 (2021). https://doi.org/10.1007/s10854-021-06076-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-06076-1

Navigation