Skip to main content
Log in

Influence of selenium growth condition on the photovoltaic conversion efficiency of Sb2Se3 as the solar cell absorption layer

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The influences of the selenium (Se) growth condition on the electronic level structure including deep defects and further on the photovoltaic conversion efficiency of antimony selenide (Sb2Se3) as the solar cell absorber layer are investigated by controlling the Se powder content during the vapor transport deposition process. The detailed characterizations including X-ray diffraction, Raman, optical absorption and photoluminescence reveal that the deep defects including the Se vacancies on the Sb2Se3 surface are largely reduced, and the efficiency of Sb2Se3 solar cells can be significantly improved, e.g., by about 31% from 5.1% to 6.7% after adding excessive Se powder during the growth process. This result may provide a basic guideline for improving the efficiency of Sb2Se3 solar cells during the growth process of the Sb2Se3 absorption layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

All data generated or analysed during this study are included in this published article.

References

  1. Z. Li et al., Efficiency enhancement of Sb2Se3 thin-film solar cells by the co-evaporation of Se and Sb2Se3. Appl. Phys. Express 9(5), 052302 (2016). https://doi.org/10.7567/apex.9.052302

    Article  Google Scholar 

  2. K. Zeng, D.-J. Xue, J. Tang, Antimony selenide thin-film solar cells. Semicond. Sci. Technol. 31(6), 063001 (2016). https://doi.org/10.1088/0268-1242/31/6/063001

    Article  CAS  Google Scholar 

  3. Y. Zhou et al., Solution-processed antimony selenide heterojunction solar cells. Adv. Energy Mater. 4(8), 1301846 (2014). https://doi.org/10.1002/aenm.201301846

    Article  CAS  Google Scholar 

  4. M. Birkett et al., Band gap temperature-dependence of close-space sublimation grown Sb2Se3 by photo-reflectance. APL Mater. 6(8), 084901 (2018). https://doi.org/10.1063/1.5027157

    Article  CAS  Google Scholar 

  5. J. Tao et al., Investigation of electronic transport mechanisms in Sb2Se3 thin-film solar cells. Sol. Energy Mater. Sol. Cells 197, 1–6 (2019). https://doi.org/10.1016/j.solmat.2019.04.003

    Article  CAS  Google Scholar 

  6. L. Wang et al., Stable 6%-efficient Sb2Se3 solar cells with a ZnO buffer layer. Nat. Energy 2(4), 1–9 (2017). https://doi.org/10.1038/nenergy.2017.46

    Article  CAS  Google Scholar 

  7. X. Liu et al., Enhanced Sb2Se3 solar cell performance through theory-guided defect control. Prog. Photovoltaics Res. Appl. 25(10), 861–870 (2017). https://doi.org/10.1002/pip.2900

    Article  CAS  Google Scholar 

  8. M. Huang et al., Complicated and unconventional defect properties of the quasi-one-dimensional photovoltaic semiconductor Sb2Se3. ACS Appl. Mater. Interfaces. 11(17), 15564–15572 (2019). https://doi.org/10.1021/acsami.9b01220

    Article  CAS  Google Scholar 

  9. L. Wang et al., Ambient CdCl2 treatment on CdS buffer layer for improved performance of Sb2Se3 thin film photovoltaics. Appl. Phys. Lett. 107(14), 143902 (2015). https://doi.org/10.1063/1.4932544

    Article  CAS  Google Scholar 

  10. M. Leng et al., Selenization of Sb2Se3 absorber layer: an efficient step to improve device performance of CdS/Sb2Se3 solar cells. Appl. Phys. Lett. 105(8), 083905 (2014). https://doi.org/10.1063/1.4894170

    Article  CAS  Google Scholar 

  11. X. Wen et al., Vapor transport deposition of antimony selenide thin film solar cells with 76% efficiency. Nat. Commun. 9(1), 1–10 (2018). https://doi.org/10.1038/s41467-018-04634-6

    Article  CAS  Google Scholar 

  12. K. Shen et al., Efficient and stable planar n–i–p Sb2Se3 solar cells enabled by oriented 1D trigonal selenium structures. Adv. Sci. 7(16), 2001013 (2020). https://doi.org/10.1002/advs.202001013

    Article  CAS  Google Scholar 

  13. S. Karim et al., Synthesis of gold nanowires with controlled crystallographic characteristics. Appl. Phys. A 84(4), 403–407 (2006). https://doi.org/10.1007/s00339-006-3645-6

    Article  CAS  Google Scholar 

  14. K. Nakamura et al., Influence of CdS window layer on 2-μm thick CdS/CdTe thin film solar cells. Sol. Energy Mater. Sol. Cells 75(1–2), 185–192 (2003). https://doi.org/10.1016/s0927-0248(02)00154-x

    Article  CAS  Google Scholar 

  15. S. Yannopoulos, K. Andrikopoulos, Raman scattering study on structural and dynamical features of noncrystalline selenium. J. Chem. Phys. 121(10), 4747–4758 (2004). https://doi.org/10.1063/1.1780151

    Article  CAS  Google Scholar 

  16. K. Nagata, K. Ishibashi, Y. Miyamoto, Raman and infrared spectra of rhombohedral selenium. Jpn. J. Appl. Phys. 20(3), 463 (1981). https://doi.org/10.1143/jjap.20.463

    Article  CAS  Google Scholar 

  17. J. Tauc, R. Grigorovici, A. Vancu, Optical properties and electronic structure of amorphous germanium. Phys. Status Solidi (b) 15(2), 627–637 (1966). https://doi.org/10.1002/pssb.19660150224

    Article  CAS  Google Scholar 

  18. J. Krustok et al., The role of spatial potential fluctuations in the shape of the PL bands of multinary semiconductor compounds. Phys. Scr. 1999(T79), 179 (1999). https://doi.org/10.1238/physica.topical.079a00179

    Article  Google Scholar 

  19. M. Grossberg et al., Origin of photoluminescence from antimony selenide. J. Alloy. Compd. 817, 152716 (2020). https://doi.org/10.1016/j.jallcom.2019.152716

    Article  CAS  Google Scholar 

Download references

Funding

This work is supported by the National Natural Science Foundation of China (61874043, 61790583, 61874045, 61775060), National Key Research and Development Program (2016YFB0501604), Shanghai Science and Technology Innovation Action Plan (21JC1402000, 19JC1416700), Aero-Science Fund (201824X8001), and Fundamental Research Funds for the Central Universities.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by SD, FY and LS. The first draft of the manuscript was written by SD and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Lin Sun or Fangyu Yue.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, S., Sun, L. & Yue, F. Influence of selenium growth condition on the photovoltaic conversion efficiency of Sb2Se3 as the solar cell absorption layer. J Mater Sci: Mater Electron 33, 10335–10342 (2022). https://doi.org/10.1007/s10854-022-08021-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-08021-2

Navigation