Skip to main content
Log in

Preparation and characterization of Sb2(SxSe1−x)3 thin films deposited by pulsed laser deposition

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Antimony sulfide-selenide, Sb2(SxSe1−x)3 (0 < x < 1), with a tunable bandgap combining the advantages of antimony sulfide (Sb2S3) and antimony selenide (Sb2Se3), shows great potential as a promising light-absorbing material in low-cost, low-toxic, and high-stability thin-film solar cells. In this work, high-quality Sb2(SxSe1−x)3 thin films were successfully prepared by pulsed laser deposition (PLD) using the Sb2(SxSe1−x)3 compound targets for the first time and realized tunable bandgaps by simply changing the S/(Se + S) ratios of compound targets. The effects of substrate temperature and S/(S + Se) ratio on the structural, morphological, and optical properties of films were investigated separately. It was discovered that 500 °C was the optimum substrate temperature to grow high-crystallinity, good-morphology, and low-defects Sb2(SxSe1−x)3 thin films, and the film with S/(S + Se) ratio of 0.2 showed optimal properties. Optical characterization demonstrated all Sb2(SxSe1−x)3 thin films owned high absorption coefficients above 105 cm−1 at the visible light region and suitable bandgaps near the ideal value of the Shockley–Queisser limit. The results of energy dispersive spectrometer showed that all films were poor in Sb and rich in (S + Se), which was a favorable condition for them as light absorbers. The activation energy obtained from the electrical measurement revealed that the conductivity of Sb2(SxSe1−x)3 thin films was mainly contributed by the intrinsic thermal excitation at 350–500 K. Our research offered a simple and reliable technology to prepare Sb2(SxSe1−x)3 thin films with adjustable bandgaps and favorable properties, which is expected to promote the development and application of this semiconducting material in thin-film solar cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article and its supplementary material file.

References

  1. H. Lei, J. Chen, Z. Tan, G. Fang, Solar RRL. (2019). https://doi.org/10.1002/solr.201900026

    Article  Google Scholar 

  2. A. Mavlonov, T. Razykov, F. Raziq, J. Gan, J. Chantana, Y. Kawano, T. Nishimura, H. Wei, A. Zakutayev, T. Minemoto, X. Zu, S. Li, L. Qiao, Sol. Energy 201, 227–246 (2020). https://doi.org/10.1016/j.solener.2020.03.009

    Article  CAS  Google Scholar 

  3. C. Chen, J. Tang, ACS Energy Lett. 5, 2294–2304 (2020). https://doi.org/10.1021/acsenergylett.0c00940

    Article  CAS  Google Scholar 

  4. R. Kondrotas, C. Chen, J. Tang, Joule. 2, 857–878 (2018). https://doi.org/10.1016/j.joule.2018.04.003

    Article  CAS  Google Scholar 

  5. K. Zeng, D.-J. Xue, J. Tang, Semicond. Sci. Technol. (2016). https://doi.org/10.1088/0268-1242/31/6/063001

    Article  Google Scholar 

  6. X. Wang, R. Tang, C. Wu, C. Zhu, T. Chen, J. Energy Chem. 27, 713–721 (2018). https://doi.org/10.1016/j.jechem.2017.09.031

    Article  Google Scholar 

  7. S. Rühle, Sol. Energy 130, 139–147 (2016). https://doi.org/10.1016/j.solener.2016.02.015

    Article  Google Scholar 

  8. Y. Mamta, K.K. Singh, V.N. Maurya, Solar Energy Mater. Solar Cells. (2021). https://doi.org/10.1016/j.solmat.2021.111223

    Article  Google Scholar 

  9. P. Myagmarsereejid, M. Ingram, M. Batmunkh, Y.L. Zhong, Small 17, e2100241 (2021). https://doi.org/10.1002/smll.202100241

    Article  CAS  Google Scholar 

  10. Y.C. Choi, D.U. Lee, J.H. Noh, E.K. Kim, S.I. Seok, Adv. Funct. Mater. 24, 3587–3592 (2014). https://doi.org/10.1002/adfm.201304238

    Article  CAS  Google Scholar 

  11. Z. Li, X. Liang, G. Li, H. Liu, H. Zhang, J. Guo, J. Chen, K. Shen, X. San, W. Yu, R.E.I. Schropp, Y. Mai, Nat. Commun. 10, 125 (2019). https://doi.org/10.1038/s41467-018-07903-6

    Article  CAS  Google Scholar 

  12. B. Yang, D.J. Xue, M. Leng, J. Zhong, L. Wang, H. Song, Y. Zhou, J. Tang, Sci. Rep. 5, 10978 (2015). https://doi.org/10.1038/srep10978

    Article  CAS  Google Scholar 

  13. C.L. McCarthy, D.H. Webber, E.C. Schueller, R.L. Brutchey, Angew. Chem. Int. Ed. Engl. 54, 8378–8381 (2015). https://doi.org/10.1002/anie.201503353

    Article  CAS  Google Scholar 

  14. C. Wu, L. Zhang, H. Ding, H. Ju, X. Jin, X. Wang, C. Zhu, T. Chen, Sol. Energy Mater. Sol. Cells 183, 52–58 (2018). https://doi.org/10.1016/j.solmat.2018.04.009

    Article  CAS  Google Scholar 

  15. C. Wu, W. Lian, L. Zhang, H. Ding, C. Jiang, Y. Ma, W. Han, Y. Li, J. Zhu, T. Chen, C. Zhu, Solar RRL. (2020). https://doi.org/10.1002/solr.201900582

    Article  Google Scholar 

  16. Z. Wang, G. Chen, X. Wen, L. Lin, Z. Feng, K. Liu, P. Huang, Z. Zheng, Mater. Sci. Semicond. Process. 68, 76–79 (2017). https://doi.org/10.1016/j.mssp.2017.06.006

    Article  CAS  Google Scholar 

  17. W. Wang, G. Chen, Z. Wang, K. Wang, S. Chen, Z. Huang, X. Wang, T. Chen, C. Zhu, X. Kong, Electrochim. Acta 290, 457–464 (2018). https://doi.org/10.1016/j.electacta.2018.09.087

    Article  CAS  Google Scholar 

  18. Y. Zhang, J. Li, G. Jiang, W. Liu, S. Yang, C. Zhu, T. Chen, Solar RRL. (2017). https://doi.org/10.1002/solr.201700017

    Article  Google Scholar 

  19. W. Wang, X. Wang, G. Chen, L. Yao, X. Huang, T. Chen, C. Zhu, S. Chen, Z. Huang, Y. Zhang, Adv. Electron. Mater. (2019). https://doi.org/10.1002/aelm.201800683

    Article  Google Scholar 

  20. W. Wang, X. Wang, G. Chen, B. Chen, H. Cai, T. Chen, S. Chen, Z. Huang, C. Zhu, Y. Zhang, Solar RRL. (2018). https://doi.org/10.1002/solr.201800208

    Article  Google Scholar 

  21. C. Jiang, J. Yao, P. Huang, R. Tang, X. Wang, X. Lei, H. Zeng, S. Chang, H. Zhong, H. Yao, C. Zhu, T. Chen, Cell Rep. Phys. Sci. (2020). https://doi.org/10.1016/j.xcrp.2019.100001

    Article  Google Scholar 

  22. C. Jiang, J. Zhou, R. Tang, W. Lian, X. Wang, X. Lei, H. Zeng, C. Zhu, W. Tang, T. Chen, Energy Environ. Sci. 14, 359–364 (2021). https://doi.org/10.1039/d0ee02239j

    Article  CAS  Google Scholar 

  23. X. Wang, R. Tang, C. Jiang, W. Lian, H. Ju, G. Jiang, Z. Li, C. Zhu, T. Chen, Adv. Energy Mater. (2020). https://doi.org/10.1002/aenm.202002341

    Article  Google Scholar 

  24. R. Tang, X. Wang, W. Lian, J. Huang, Q. Wei, M. Huang, Y. Yin, C. Jiang, S. Yang, G. Xing, S. Chen, C. Zhu, X. Hao, M.A. Green, T. Chen, Nat. Energy 5, 587–595 (2020). https://doi.org/10.1038/s41560-020-0652-3

    Article  CAS  Google Scholar 

  25. Y. Zhao, S. Wang, C. Jiang, C. Li, P. Xiao, R. Tang, J. Gong, G. Chen, T. Chen, J. Li, X. Xiao, Adv. Energy Mater. (2021). https://doi.org/10.1002/aenm.202103015

    Article  Google Scholar 

  26. X. Jin, Y. Fang, T. Salim, M. Feng, Z. Yuan, S. Hadke, T.C. Sum, L.H. Wong, Adv Mater. 33, e2104346 (2021). https://doi.org/10.1002/adma.202104346

    Article  CAS  Google Scholar 

  27. M. Azam, Y.D. Luo, R. Tang, S. Chen, Z.H. Zheng, Z.H. Su, A. Hassan, P. Fan, H.L. Ma, T. Chen, G.X. Liang, X.H. Zhang, ACS Appl Mater Interfaces. 14, 4276–4284 (2022). https://doi.org/10.1021/acsami.1c20779

    Article  CAS  Google Scholar 

  28. E.A. El-Sayad, J. Non-Cryst. Solids 354, 3806–3811 (2008). https://doi.org/10.1016/j.jnoncrysol.2008.05.004

    Article  CAS  Google Scholar 

  29. K. Yang, B. Li, G. Zeng, Solar Energy Mater Solar Cells. (2020). https://doi.org/10.1016/j.solmat.2019.110381

    Article  Google Scholar 

  30. M. Ishaq, H. Deng, S. Yuan, H. Zhang, J. Khan, U. Farooq, H. Song, J. Tang, Solar RRL. (2018). https://doi.org/10.1002/solr.201800144

    Article  Google Scholar 

  31. B. Yang, S. Qin, D.-J. Xue, C. Chen, Y.-S. He, D. Niu, H. Huang, J. Tang, Prog. Photovolt. Res. Appl. 25, 113–122 (2017). https://doi.org/10.1002/pip.2819

    Article  CAS  Google Scholar 

  32. Y. Yin, C. Jiang, Y. Ma, R. Tang, X. Wang, L. Zhang, Z. Li, C. Zhu, T. Chen, Adv Mater. 33, e2006689 (2021). https://doi.org/10.1002/adma.202006689

    Article  CAS  Google Scholar 

  33. S. Lu, Y. Zhao, X. Wen, D.J. Xue, C. Chen, K. Li, R. Kondrotas, C. Wang, J. Tang, Solar RRL. (2019). https://doi.org/10.1002/solr.201800280

    Article  Google Scholar 

  34. K. Li, Y. Lu, X. Ke, S. Li, S. Lu, C. Wang, S. Wang, C. Chen, J. Tang, Solar RRL. (2020). https://doi.org/10.1002/solr.202000220

    Article  Google Scholar 

  35. Y. Pan, X. Hu, Y. Guo, X. Pan, F. Zhao, G. Weng, J. Tao, C. Zhao, J. Jiang, S. Chen, P. Yang, J. Chu, Adv. Funct. Mater. (2021). https://doi.org/10.1002/adfm.202101476

    Article  Google Scholar 

  36. Y. Xie, K. Li, X. Li, F. Gao, X. Xiong, G. Zeng, B. Li, Mater. Sci. Semicond. Process. (2022). https://doi.org/10.1016/j.mssp.2022.106451

    Article  Google Scholar 

  37. K. Li, Y. Xie, B. Zhou, X. Li, F. Gao, X. Xiong, B. Li, G. Zeng, M. Ghali, Opt. Mater. (2021). https://doi.org/10.1016/j.optmat.2021.111659

    Article  Google Scholar 

  38. C. Chen, Y. Yin, W. Lian, L. Jiang, R. Tang, C. Jiang, C. Wu, D. Gao, X. Wang, F. Fang, C. Zhu, T. Chen, Appl. Phys. Lett. 10(1063/1), 5139467 (2020)

    Google Scholar 

  39. S.A. Vanalakar, G.L. Agawane, S.W. Shin, M.P. Suryawanshi, K.V. Gurav, K.S. Jeon, P.S. Patil, C.W. Jeong, J.Y. Kim, J.H. Kim, J. Alloys Compd. 619, 109–121 (2015). https://doi.org/10.1016/j.jallcom.2014.09.018

    Article  CAS  Google Scholar 

  40. L. Sun, J. He, H. Kong, F. Yue, P. Yang, J. Chu, Sol. Energy Mater. Sol. Cells 95, 2907–2913 (2011). https://doi.org/10.1016/j.solmat.2011.06.026

    Article  CAS  Google Scholar 

  41. A.V. Moholkar, S.S. Shinde, G.L. Agawane, S.H. Jo, K.Y. Rajpure, P.S. Patil, C.H. Bhosale, J.H. Kim, J. Alloys Compd. 544, 145–151 (2012). https://doi.org/10.1016/j.jallcom.2012.07.108

    Article  CAS  Google Scholar 

  42. K. Sekiguchi, K. Tanaka, K. Moriya, H. Uchiki, Phys. Status Solidi c. 3, 2618–2621 (2006). https://doi.org/10.1002/pssc.200669603

    Article  CAS  Google Scholar 

  43. K. Yang, B. Li, G. Zeng, Superlattices Microstruct. (2020). https://doi.org/10.1016/j.spmi.2020.106618

    Article  Google Scholar 

  44. Y. Yang, T. Guo, D. Wang, X. Xiong, B. Li, J. Mater. Sci.: Mater. Electron. 31, 13947–13956 (2020). https://doi.org/10.1007/s10854-020-03954-y

    Article  CAS  Google Scholar 

  45. G. Singla, K. Singh, O.P. Pandey, Appl. Phys. A 113, 237–242 (2013).

    Article  CAS  Google Scholar 

  46. H. Deng, S. Yuan, X. Yang, J. Zhang, J. Khan, Y. Zhao, M. Ishaq, W. Ye, Y.-B. Cheng, H. Song, J. Tang, Prog. Photovolt. Res. Appl. 26, 281–290 (2018). https://doi.org/10.1002/pip.2980

    Article  CAS  Google Scholar 

  47. R.G.S. Marquina, T.G. Sanchez, N.R. Mathews, X. Mathew, Mater. Res. Bull. 90, 285–294 (2017). https://doi.org/10.1016/j.materresbull.2017.03.013

    Article  CAS  Google Scholar 

  48. M.H. Lakhdar, B. Ouni, M. Amlouk, Optik 125, 2295–2301 (2014). https://doi.org/10.1016/j.ijleo.2013.10.114

    Article  CAS  Google Scholar 

  49. O. Flores-Ventura, M. Courel, T.G. Sanchez, N.R. Mathews, X. Mathew, Mater. Sci. Semicond. Process. (2021). https://doi.org/10.1016/j.mssp.2021.106081

    Article  Google Scholar 

  50. M. Huang, Z. Cai, S. Chen, J Chem Phys. 153, 014703 (2020). https://doi.org/10.1063/5.0013217

    Article  CAS  Google Scholar 

  51. R. Mahani, E.A. El-Sayad, J. Adv. Dielectr. (2019). https://doi.org/10.1142/s2010135x19500012

    Article  Google Scholar 

  52. H. Yan, R. Xiao, Y. Pei, K. Yang, B. Li, J. Mater. Sci.: Mater. Electron. 31, 644–651 (2019). https://doi.org/10.1007/s10854-019-02570-9

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China [Grant No. 61574094]. We sincerely thank Prof. Li Wu for the measurement of Raman and Prof. Yi He for the measurement of SEM at the Analytical & Testing Center of Sichuan University, as well as Ms. Yue Qi for the XRD measurements at the comprehensive training platform of the Specialized Laboratory in the College of Chemistry, Sichuan University.

Author information

Authors and Affiliations

Authors

Contributions

Professor BL made substantial contributions to the conception and design. FG designed and carried out the experiment, analyzed the data, and revised the manuscript. XL, XX, KL, and YX assisted the characterization and analysis. JL assisted the analysis and modification. GZ and MG assisted the writing-review.

Corresponding author

Correspondence to Bing Li.

Ethics declarations

Competing interests

No conflict of interest exits in the submission of this manuscript, and manuscript is approved by all authors for publication. I would like to declare on behalf of my co-authors that the work described was original research that has not been published previously, and not under consideration for publication elsewhere, in whole or in part. All the authors listed have approved the manuscript that is enclosed. All data and materials are real and available.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 281 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, F., Li, X., Xiong, X. et al. Preparation and characterization of Sb2(SxSe1−x)3 thin films deposited by pulsed laser deposition. J Mater Sci: Mater Electron 33, 26086–26099 (2022). https://doi.org/10.1007/s10854-022-09296-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-09296-1

Navigation