Skip to main content

Advertisement

Log in

Strip-like Co-based metal–organic framework as electrode material for supercapacitors

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The cobalt-based metal–organic framework (Co-MOF) as an electrode material with satisfied electrochemical performances has received much attention in energy storage field. Herein, a strip-like Co-MOF was fabricated by a simple one-step solvothermal strategy. In which, the strips are of distinct lengths and thicknesses, and haphazardly lap together to form a stable structure similar to a bird's nest that could provide more moderation space for the volume expansion of the Co-MOF as electrode material in charge and discharge process. The unique structure shows the characteristics of hierarchical pores, which could effectively improve the specific surface area of the Co-MOF material, thereby enhancing the storage of electrochemical energy. The strip-like Co-MOF is endowed with large specific surface area of 643.5 m2/g, high specific capacity of 135.1 C/g at a current density of 0.5 A/g, and good capacitance retention of 91.7% after 2000 cycles at 5 A/g. Moreover, the asymmetric supercapacitor device assembled by using the strip-like Co-MOF as cathode and commercial activated carbon (AC) as anode exhibits a specific capacitance of 58.3 F/g at the current density of 0.5 A/g in a voltage window of 1.55 V, and the maximum energy density is 19.5 Wh/kg at a power density of 389 W/kg. The novel strategy to construct unique microstructure MOF with good properties could be applied to prepare other MOF-based functional materials for various applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

The datasets used or analyzed during the current study are available from the corresponding author on reasonable request.

Code availability

Not applicable.

References

  1. Z. Duan, X. Tan, Y. Sun, W.C. Zhang, A. Umar, X. Wu, A.C.S. Appl, Nano Mater. 4, 10791–10798 (2021)

    CAS  Google Scholar 

  2. D. Zhao, M. Dai, Y. Zhao, H. Liu, Y. Liu, X. Wu, Nano Energy 72, 104715 (2020)

    Article  CAS  Google Scholar 

  3. J.W. Yoon, J.H. Kim, C. Kim, H.W. Jang, J.H. Lee, Adv. Energy Mater. 11, 2003052 (2021)

    Article  CAS  Google Scholar 

  4. D. Zhao, M. Dai, H. Liu, K. Chen, X. Zhu, D. Xue, X. Wu, J. Liu, Adv. Mater. Interfaces 6, 1901308 (2019)

    Article  CAS  Google Scholar 

  5. Y. Liu, X. Wu, Nano Energy 86, 106124 (2021)

    Article  CAS  Google Scholar 

  6. M. Dai, D. Zhao, H. Liu, X. Zhu, X. Wu, B. Wang, A.C.S. Appl, Energy Mater. 4, 2637–2643 (2021)

    CAS  Google Scholar 

  7. B. Guan, Y. Li, B.Y. Yin, K.F. Liu, D.W. Wang, H.H. Zhang, C.J. Cheng, Chem. Eng. J. 308, 1165–1173 (2017)

    Article  CAS  Google Scholar 

  8. W.B. Ma, K.H. Zhu, S.F. Ye, Y. Wang, L. Guo, X.Y. Tao, L.T. Guo, H.L. Fan, Z.S. Liu, Y.B. Zhu, X.Y. Wei, J. Mater. Sci. 32, 20445–20460 (2021)

    CAS  Google Scholar 

  9. Q.F. Meng, K.F. Cai, Y.X. Chen, L.D. Chen, Nano Energy 36, 268–285 (2017)

    Article  CAS  Google Scholar 

  10. S. Shin, M.W. Shin, Appl. Surf. Sci. 540, 148295 (2021)

    Article  CAS  Google Scholar 

  11. Z. Li, Sh.G. Mao, Y. Yang, Z. Sun, R. Zhao, J. Colloid Interface Sci. 585, 85–94 (2021)

    Article  CAS  Google Scholar 

  12. F. Zhang, J.L. Zhang, J. Song, Y. You, X.L. Jin, J.L. Ma, Ceram. Int. 47, 14001–14008 (2021)

    Article  CAS  Google Scholar 

  13. X.M. Yin, H.J. Li, R.M. Yuan, J.H. Lu, J. Colloid Interface Sci. 586, 219–232 (2021)

    Article  CAS  Google Scholar 

  14. B. Iqbal, A. Laybourn, A. ul-Hamid, M. Zaheer, Ceram. Int. 47, 12433–12441 (2021)

    Article  CAS  Google Scholar 

  15. X.H. Cao, C.L. Tan, M. Sindoro, H. Zhang, Chem. Soc. Rev. 46, 2660–2677 (2017)

    Article  CAS  Google Scholar 

  16. Y. Liu, X.T. Xu, W. Miao, T. Lu, Z. Sun, L.K. Pan, Chem. Commun. 51, 12020–12023 (2015)

    Article  CAS  Google Scholar 

  17. W.H. Li, K. Ding, H.R. Tian, M.S. Yao, B. Nath, W.H. Deng, Y.B. Wang, G. Xu, Adv. Funct. Mater. 27, 1702067 (2017)

    Article  Google Scholar 

  18. L. Wang, X. Feng, L.T. Ren, Q.H. Piao, J.Q. Zhong, Y.B. Wang, H.W. Li, Y.F. Chen, B. Wang, J. Am. Chem. Soc. 137, 4920–4923 (2015)

    Article  CAS  Google Scholar 

  19. J. Yang, Z.H. Ma, W.X. Gao, M.D. Wei, Chem. Eur. J. 23, 631–636 (2017)

    Article  CAS  Google Scholar 

  20. C.H. Wang, D.W. Zhang, S. Liu, Y. Yamauchi, F.B. Zhang, Y.V. Kaneti, Chem. Commun. 58, 1009–1012 (2022)

    Article  CAS  Google Scholar 

  21. H.Y. Zhang, J. Li, Z.Q. Li, Y.Y. Song, S.Y. Zhu, J.C. Wang, Y. Sun, X.Q. Zhang, B.P. Lin, J. Phys. Chem. Solids 160, 110336 (2022)

    Article  CAS  Google Scholar 

  22. C.L. Wang, X.R. Li, W.P. Yang, Y.X. Xu, H. Pang, Chin. Chem. Lett. 32, 2909–2913 (2021)

    Article  CAS  Google Scholar 

  23. H.C. Xia, J.N. Zhang, Z. Yang, S.Y. Guo, S.H. Guo, Q. Xu, Nano-Micro Lett. 9, 43 (2017)

    Article  Google Scholar 

  24. F.T. Ran, X.Q. Xu, D. Pan, Y.Y. Liu, Y.P. Bai, L. Shao, Nano-Micro Lett. 12, 46 (2020)

    Article  CAS  Google Scholar 

  25. S. Li, J.D. Lin, W.M. Xiong, X.Y. Guo, D.Y. Wu, Q.B. Zhang, Q.L. Zhu, L. Zhang, Coord. Chem. Rev. 438, 213872 (2021)

    Article  CAS  Google Scholar 

  26. R. Ramachandran, C.H. Zhao, D. Luo, K. Wang, F. Wang, Electrochim. Acta 267, 170–180 (2018)

    Article  CAS  Google Scholar 

  27. F. Xu, N. Chen, Z.Y. Fan, G.P. Du, Appl. Surf. Sci. 528, 146920 (2020)

    Article  CAS  Google Scholar 

  28. Z.Y. Peng, L.Y. Gong, J. Huang, Y. Wang, L.C. Tan, Y.W. Chen, Carbon 153, 531–538 (2019)

    Article  CAS  Google Scholar 

  29. G.L. Zhu, H. Wen, M. Ma, W.Y. Wang, L. Yang, L.C. Wang, X.F. Shi, X.W. Cheng, X.P. Sun, Y.D. Yao, Chem. Commun. 54, 10499–10502 (2018)

    Article  CAS  Google Scholar 

  30. C.H. Huang, Y.Z. Hu, S.P. Jiang, H.C. Chen, Electrochim. Acta 325, 134936 (2019)

    Article  CAS  Google Scholar 

  31. P. Bandyopadhyay, G. Saeed, N.H. Kim, J.H. Lee, Chem. Eng. J. 384, 123357 (2020)

    Article  CAS  Google Scholar 

  32. S. Zhong, C.X. Zhan, D.P. Cao, Carbon 85, 51–59 (2015)

    Article  CAS  Google Scholar 

  33. M. Ullah, S.Z. Ren, C. Hao, G. Mustafa, J. Mater. Sci. 32, 20306–20316 (2021)

    Google Scholar 

  34. C. Sambathkumar, R. Ranjithkumar, S. Ezhil Arasi, A. Manikandan, N. Nallamuthu, M. Krishna Kumar, A. Arivarasan, P. Devendran, J. Mater. Sci. 32, 20058–20070 (2021)

    CAS  Google Scholar 

  35. X.L. Zhang, J.M. Wang, X. Ji, Y.W. Sui, F.X. Wei, J.Q. Qi, Q.K. Meng, Y.J. Ren, Y.Z. He, J. Alloys Compd. 825, 154069 (2020)

    Article  CAS  Google Scholar 

  36. Q.B. Zhang, Z.C. Liu, B.T. Zhao, Y. Cheng, L. Zhang, H.H. Wu, M.S. Wang, S.G. Dai, K.L. Zhang, D. Ding, Y.P. Wu, M.L. Liu, Energy Storage Mater. 16, 632–645 (2019)

    Article  Google Scholar 

  37. Y.X. Chen, C. Jing, X. Fu, M. Shen, K.L. Li, X.Y. Liu, H.C. Yao, Y.X. Zhang, K.X. Yao, Chem. Eng. J. 384, 123367 (2020)

    Article  CAS  Google Scholar 

  38. P. Zhou, J.F. Wan, X.R. Wang, K. Xu, Y.G. Gong, L.N. Chen, J. Colloid Interface Sci. 575, 96–107 (2020)

    Article  CAS  Google Scholar 

  39. A. Hosseinian, A.H. Amjad, R. Hosseinzadeh-Khanmiri, E. Ghorbani-Kalhor, M. Babazadeh, E. Vessally, J. Mater. Sci. 28, 18040–18048 (2017)

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (51763014 and 52073133), Joint Fund between Shenyang National Laboratory for Materials Science and State Key Laboratory of Advanced Processing and Recycling of Nonferrous Metals (18LHPY005).

Funding

This work was supported by the National Natural Science Foundation of China (51763014 and 52073133), Joint Fund between Shenyang National Laboratory for Materials Science and State Key Laboratory of Advanced Processing and Recycling of Nonferrous Metals (18LHPY005).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Methodology, formal analysis, investigation, and writing-original draft preparation: XK, Material preparation and data collection: JW, Writing-review, and editing: XS, Visualization: XC and HT, Supervision: YM, Funding acquisition: FR, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Ying-Xia Ma or Fen Ran.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kang, XY., Ma, YX., Wang, JW. et al. Strip-like Co-based metal–organic framework as electrode material for supercapacitors. J Mater Sci: Mater Electron 33, 8256–8269 (2022). https://doi.org/10.1007/s10854-022-07980-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-07980-w

Navigation