Skip to main content
Log in

Highly selective NH3 gas sensor based on polypyrrole/Ti3C2Tx nanocomposites operating at room temperature

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Semiconducting nanomaterials with different sizes and shapes have wide applications in the field of electronics, and one of the key pathway to improve their performance is by recombination of different materials. In our innovative work, the nanocomposites of polypyrrole (PPy) and MXene were prepared by a simple in situ polymerization reaction. The samples were characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy (XPS). The samples were made into sensors, and the gas sensitivities of the materials were investigated under different test conditions. The results showed that the response value of PPy/MXene-12 sensor to 100 ppm ammonia at room temperature was 2.38 times than that of pure PPy and 6.38 times than that of pure MXene. In addition, the sensor has excellent selectivity and low detection limit, which demonstrate the excellent practicability of them in the field of Internet of Things (IoT).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

  1. T. Li, Y. Li, T. Zhang, Acc. Chem. Res. 52, 288 (2019)

    Article  CAS  Google Scholar 

  2. B.H. Timmer, W. Olthuis, A.V.D. Berg, Sens. Actuators B 107, 666 (2005)

    Article  CAS  Google Scholar 

  3. D.Z. Zhang, Z.M. Yang, P. Li, M.S. Pang, Q.Z. Xue, Nano Energy 65, 103974 (2019)

    Article  CAS  Google Scholar 

  4. D.Z. Zhang, C.X. Jiang, P. Li, Y.E. Sun, A.C.S. Appl, Mater. Interfaces 9, 6462 (2017)

    Article  CAS  Google Scholar 

  5. Y.J. Zhang, J.X. Zhang, Y.D. Jiang, Z.H. Duan, B.H. Liu, Q.N. Zhao, S. Wang, Z. Yuan, H.L. Tai, Sens. Actuators B 319, 128293 (2020)

    Article  CAS  Google Scholar 

  6. I.P. Liu, C.H. Chang, T.C. Chou, K.W. Lin, Sens. Actuators B 291, 148 (2019)

    Article  CAS  Google Scholar 

  7. H.U. Khan, M. Tariq, M. Shah, M. Iqbal, M.T. Jan, Synth Met. 268, 116482 (2020)

    Article  Google Scholar 

  8. H.Y. Li, D.H. Kim, J.H. Lee, A.C.S. Appl, Mater. Interfaces 10, 27858 (2018)

    Article  CAS  Google Scholar 

  9. S.J. Kim, H.J. Koh, C.E. Ren, O. Kwon, K. Maleski, S.Y. Cho et al., ACS Nano 12, 986 (2018)

    Article  CAS  Google Scholar 

  10. T. Hibbard, A.J. Killard, Crit. Rev. Anal. Chem. 41, 21 (2011)

    Article  CAS  Google Scholar 

  11. N. Yamazoe, Sens. Actuator B 108, 2 (2005)

    Article  CAS  Google Scholar 

  12. Y.B. Zhang, J. Yin, L. Li, L.X. Zhang, L.J. Bie, Sens. Actuator B 202, 500 (2014)

    Article  CAS  Google Scholar 

  13. J.N. Zhang, H.B. Lu, C. Liu, C.J. Chen, X. Xin, RSC ADV. 7, 40499 (2017)

    Article  CAS  Google Scholar 

  14. Y.L. Liu, G.Z. Li, R.D. Mi, C.K. Deng, P.Z. Gao, Sens. Actuator B 191, 537 (2014)

    Article  CAS  Google Scholar 

  15. G. Binitha, M.S. Soumya, A.A. Madhavan, P. Praveen, A. Balakrishnan, K.R.V. Reddy, M.V. Subramanian, S.V. Nair, A.S. Nair, N. Sivakumar, J. Mater. Chem. A 1, 11698 (2013)

    Article  CAS  Google Scholar 

  16. C.H. Liu, H.L. Tai, P. Zhang, Z. Yuan, X.S. Du, G.Z. Xie, Y.D. Jiang, Sens. Actuator B 261, 587 (2018)

    Article  CAS  Google Scholar 

  17. V. Haridas, A. Sukhananazerin, J.M. Sneha, B. Pullithadathil, B. Narayanan, Appl. Surf. Sci. 517, 146158 (2020)

    Article  CAS  Google Scholar 

  18. S. Tohidi, M. Parhizkar, H. Bidadi, R. Mohamad-Rezaei, Nanotechnology 31, 415501 (2020)

    Article  CAS  Google Scholar 

  19. D.Z. Zhang, S.J. Yu, X.W. Wang, J.K. Huang, W.J. Pan, J.H. Zhang, B.E. Meteku, J.B. Zeng, J. Hazard Mater. 423, 127160 (2022)

    Article  CAS  Google Scholar 

  20. Y. Zhou, Y.H. Wang, Y.J. Wang, H.C. Yu, R.J. Zhang, J. Li, Z.G. Zang, X. Li, A.C.S. Appl, Mater. Interfaces 47, 56485 (2021)

    Article  Google Scholar 

  21. S.S. Li, X.H. Cui, X.H. Li, H.T. Yan, R.Z. Zhang, H.L. Cui, Vacuum 196, 110774 (2022)

    Article  CAS  Google Scholar 

  22. P.G. Su, C.T. Lee, C.Y. Chou, Talanta 80, 763 (2009)

    Article  CAS  Google Scholar 

  23. O.S. Kwon, E. Park, O.Y. Kweon, S.J. Park, J. Jang, Talanta 82, 1338 (2010)

    Article  CAS  Google Scholar 

  24. D.K. Bandgar, S.T. Navale, S.R. Nalage, R.S. Mane, F.J. Stadler, D.K. Aswal, S.K. Gupta, V.B. Patil, J. Mater. Chem. C. 3, 9461 (2015)

    Article  CAS  Google Scholar 

  25. L. Kumar, I. Rawal, A. Kaur, S. Annapoorni, Sens. Actuators B 240, 408 (2017)

    Article  CAS  Google Scholar 

  26. T. Syrový, P. Kuberský, I. Sapurina, S. Pretl, P. Bober, L. Syrová, A. Hamáček, J. Stejskald, Sens. Actuators B 225, 510 (2016)

    Article  Google Scholar 

  27. J.H. Sun, X. Shu, Y.L. Tian, Z.F. Tong, S.L. Bai, R.X. Luo, D.Q. Li, C.C. Liu, Sens. Actuators B 241, 658 (2017)

    Article  CAS  Google Scholar 

  28. Y. Li, H.T. Ban, M.J. Yang, Sens. Actuators B 224, 449 (2016)

    Article  CAS  Google Scholar 

  29. L.J. Zhao, K. Wang, W. Wei, L.L. Wang, W. Han, InfoMat. 1, 407 (2019)

    Article  CAS  Google Scholar 

  30. X.F. Yu, Y.C. Li, J.B. Cheng, Z.B. Liu, Q.Z. Li, W.Z. Li, X. Yang, B. Xiao, A.C.S. Appl, Mater. Interf. 7, 13707 (2015)

    Article  CAS  Google Scholar 

  31. E. Lee, A.V. Mohammadi, B.C. Prorok, Y.S. Yoon, M. Beidaghi, D.J. Kim, A.C.S. Appl, Mater. Interf. 9, 37184 (2017)

    Article  CAS  Google Scholar 

  32. A. Hermawan, B. Zhang, A. Taufik, Y. Asakura, T. Hasegawa, J. Zhu, P. Shi, S. Yin, A.C.S. Appl, Nano Mater. 3, 4755 (2020)

    CAS  Google Scholar 

  33. M. Alhabeb, K. Maleski, B. Anasori, P. Lelyukh, L. Clark, S. Sin, Y. Gogotsi, Chem. Mater. 29, 7633 (2017)

    Article  CAS  Google Scholar 

  34. S.B. Sun, M.W. Wang, X.T. Chang, Y.C. Jiang, D.Z. Zhang, D.S. Wang, Y.L. Zhang, Y.H. Lei, Sens. Actuators B 304, 127274 (2020)

    Article  CAS  Google Scholar 

  35. M.S. Zhu, Y. Huang, Q.H. Deng, Z.X. Pei, Q. Xue, Y. Huang, Z.F. Wang, H.F. Li, Q. Huang, C.Y. Zhi, Adv. Energy Mater. 6, 1600969 (2016)

    Article  Google Scholar 

  36. Y. Tang, J.F. Zhu, C.H. Yang, F. Wang, J. Alloys. Compd. 685, 194 (2016)

    Article  CAS  Google Scholar 

  37. P. Xu, X.J. Han, C. Wang, D.H. Zhou, Z.S. Lv, A.H. Wen, X.H. Wang, B. Zhang, J. Phys. Chem. B 112, 10443 (2008)

    Article  CAS  Google Scholar 

  38. T.S. Liu, N. Liu, Q.D. An, Z.Y. Xiao, S.R. Zhai, Z.C. Li, J. Alloys Compd. 802, 445 (2019)

    Article  CAS  Google Scholar 

  39. F. Li, H. Li, H. Jiang, K. Zhang, K. Chang, S. Jia, W. Jiang, Y. Shang, W. Lu, S. Deng, M. Chen, Appl. Surf. Sci. 280, 212 (2013)

    Article  CAS  Google Scholar 

  40. W.L. Wu, D. Wei, J.F. Zhu, D.J. Niu, F. Wang, L. Wang, L.Q. Yang, P.P. Yang, C.W. Wang, Ceram. Int. 45, 7328 (2019)

    Article  CAS  Google Scholar 

  41. X. Jian, M. He, L. Chen, M.M. Zhang, R. Li, L.J. Gao, F. Fu, Z.H. Liang, Electrochim. Acta 318, 820 (2019)

    Article  CAS  Google Scholar 

  42. X. Lia, J.L. Xu, Y.D. Jiang, Z.Z. He, B.H. Liu, H.K. Xie, H. Li, Z.M. Li, Y. Wang, H.L. Tai, Sens. Actuator B 316, 128144 (2020)

    Article  Google Scholar 

  43. D.C. Tiwari, P. Atri, R. Sharma, Synth. Met. 203, 228 (2015)

    Article  CAS  Google Scholar 

  44. S. Bai, Y. Tian, M. Cui, J. Sun, Y. Tian, R. Luo et al., Sens. Actuators B 226, 540 (2016)

    Article  CAS  Google Scholar 

  45. M. Boota, B. Anasori, C. Voigt, M.Q. Zhao, M.W. Barsoum, Y. Gogotsi, Adv. Mater. 28, 1517 (2016)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Natural Science Foundation of Henan Province (No. 202300410112) and Youth Backbone Teacher Training Program of Henan University of Technology (No. 21420154).

Author information

Authors and Affiliations

Authors

Contributions

ZZ and XS conceived the project, designed the experiments, and wrote the manuscript. PC, ZS, Y.T., BL, BH, SZ, and CL performed the experiments and analyzed the data. All authors participated in manuscript revisions, discussions, and data interpretation.

Corresponding authors

Correspondence to Zhihua Zhao or Xiaoqing Shen.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, P., Zhao, Z., Shao, Z. et al. Highly selective NH3 gas sensor based on polypyrrole/Ti3C2Tx nanocomposites operating at room temperature. J Mater Sci: Mater Electron 33, 6168–6177 (2022). https://doi.org/10.1007/s10854-022-07792-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-07792-y

Navigation