Skip to main content
Log in

Visible-light activation of peroxydisulfate by magnetic BiOBr/MnFe2O4 nanocomposite toward degradation of tetracycline

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

A facile solvothermal method was employed to prepare magnetic BiOBr/MnFe2O4 (BM) nanocomposite, which was characterized in detail and used to activate peroxydisulfate (PDS) for tetracycline (TC) degradation under visible light illumination. Coupling BiOBr with MnFe2O4 not only solves the separation problem of BiOBr but also improves its photocatalytic activity for PDS activation. After exposure to visible light for 90 min, the removal efficiency of TC (20 mg L−1) from water by BM-10/PDS system was 76.5%, which was higher than that of BiOBr/PDS system. The influence of some key process parameters (reaction temperature, catalyst dose, solution pH and inorganic anions) on TC degradation in BM-10/PDS system was investigated. The mechanism for PDS activation and TC degradation in BM-10/PDS/visible light system were proposed, and the SO4·, ·OH, h+ and O2· all participated in TC degradation. TC removal from the different real water matrices by BM-10/PDS/visible light oxidation system was also studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Scheme 2
Fig. 12

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Z.M. Liu, Z.M. Gao, Q. Wu, Activation of persulfate by magnetic zirconium-doped manganese ferrite for efficient degradation of tetracycline. Chem. Eng. J. 423, 130283 (2021). https://doi.org/10.1016/j.cej.2021.130283

    Article  CAS  Google Scholar 

  2. B. Xiao, M. Wu, Y. Wang, R.F. Chen, H. Liu, Sulfite activation and tetracycline removal by rectangular copper oxide nanosheets with dominantly exposed (001) reactive facets: performance, degradation pathway and mechanism. Chem. Eng. J. 406, 126693 (2021). https://doi.org/10.1016/j.cej.2020.126693

    Article  CAS  Google Scholar 

  3. M. Yu, C.D. Sun, L.H. Wang, K. Zang, M.Z. Li, L. Zhou, Y. Zheng, Semi-coke activated persulfate promotes simultaneous degradation of sulfadiazine and tetracycline in a binary mixture. Chem. Eng. J. 416, 129122 (2021). https://doi.org/10.1016/j.cej.2021.129122

    Article  CAS  Google Scholar 

  4. X.W. Zhang, F. Wang, C.C. Wang, P. Wang, H.F. Fu, C. Zhao, Photocatalysis activation of peroxodisulfate over the supported Fe3O4 catalyst derived from MIL-88A(Fe) for efficient tetracycline hydrochloride degradation. Chem. Eng. J. 426, 131927 (2021). https://doi.org/10.1016/j.cej.2021.131927

    Article  CAS  Google Scholar 

  5. Y.X. Guo, L.G. Yan, X.G. Li, T. Yan, W. Song, T.L. Hou, C.L. Tong, J.L. Mu, M. Xu, Goethite/biochar-activated peroxymonosulfate enhances tetracycline degradation: inherent roles of radical and non-radical processes. Sci. Total Environ. 783, 147102 (2021). https://doi.org/10.1016/j.scitotenv.2021.147102

    Article  CAS  Google Scholar 

  6. M. Yang, X.H. Ren, L.X. Hu, W.L. Guo, J.H. Zhan, Facet-controlled activation of persulfate by goethite for tetracycline degradation in aqueous solution. Chem. Eng. J. 412, 128628 (2021). https://doi.org/10.1016/j.cej.2021.128628

    Article  CAS  Google Scholar 

  7. Z.X. Wang, H. Wang, Z.W. Wang, D.L. Huang, H. Qin, Y.Z. He, M. Chen, G.M. Zeng, P. Xu, Ferrocene modified g-C3N4 as a heterogeneous catalyst for photo-assisted activation of persulfate for the degradation of tetracycline. Colloids Surf. A. 626, 127024 (2021). https://doi.org/10.1016/j.colsurfa.2021.127024

    Article  CAS  Google Scholar 

  8. J.L. Zhang, B.H. Jing, Z.Y. Tang, Z.M. Ao, D.H. Xia, M.S. Zhu, S.B. Wang, Experimental and DFT insights into the visible-light driving metal-free C3N5 activated persulfate system for efficient water purification. Appl. Catal. B Environ. 289, 120023 (2021). https://doi.org/10.1016/j.apcatb.2021.120023

    Article  CAS  Google Scholar 

  9. M. Li, Y.W. Li, P.F. Yu, H.M. Zhao, L. Xiang, N.X. Feng, Q.K. Li, K.Y. He, X. Luo, Q.Y. Cai, S.Q. Zhou, C.H. Mo, K.L. Yeung, Exploring degradation mechanism of tetracycline via high-effective peroxymonosulfate catalysts of montmorillonite hybridized CoFe composites and safety assessment. Chem. Eng. J. 427, 130930 (2022). https://doi.org/10.1016/j.cej.2021.130930

    Article  CAS  Google Scholar 

  10. H.R. Sun, F. Guo, J.J. Pan, W. Huang, K. Wang, W.L. Shi, One-pot thermal polymerization route to prepare N-deficient modified g-C3N4 for the degradation of tetracycline by the synergistic effect of photocatalysis and persulfate-based advanced oxidation process. Chem. Eng. J. 406, 126844 (2021). https://doi.org/10.1016/j.cej.2020.126844

    Article  CAS  Google Scholar 

  11. M.Y. Jia, Z.H. Yang, W.P. Xiong, J. Cao, Y.P. Xiang, H.H. Peng, Y. Jing, C.J. Zhang, H.Y. Xu, P.P. Song, Magnetic heterojunction of oxygen-deficient Ti3+-TiO2 and Ar-Fe2O3 derived from metal-organic frameworks for efficient peroxydisulfate (PDS) photo-activation. Appl. Catal. B Environ. 298, 120513 (2021). https://doi.org/10.1016/j.apcatb.2021.120513

    Article  CAS  Google Scholar 

  12. Q.W. Tang, X.Q. An, H.C. Lan, H.J. Liu, J.H. Qu, Polyoxometalates/TiO2 photocatalysts with engineered facets for enhanced degradation of bisphenol A through persulfate activation. Appl. Catal. B Environ. 268, 118394 (2020). https://doi.org/10.1016/j.apcatb.2019.118394Get

    Article  CAS  Google Scholar 

  13. J. Li, Y.T. Liu, X.Y. Ren, W.Y. Dong, H. Chen, T. Cai, W.G. Zeng, W.L. Li, L. Tang, Soybean residue based biochar prepared by ball milling assisted alkali activation to activate peroxydisulfate for the degradation of tetracycline. J. Colloid Interface Sci. 599, 631–641 (2021). https://doi.org/10.1016/j.jcis.2021.04.074

    Article  CAS  Google Scholar 

  14. H. Ding, J.Y. Hu, Degradation of ibuprofen by UVA-LED/TiO2/persulfate process: kinetics, mechanism, water matrix effects, intermediates and energy consumption. Chem. Eng. J. 397, 125462 (2020). https://doi.org/10.1016/j.cej.2020.125462

    Article  CAS  Google Scholar 

  15. B.T. Xu, M.B. Ahmed, J.L. Zhou, A. Altaee, Visible and UV photocatalysis of aqueous perfluorooctanoic acid by TiO2 and peroxymonosulfate: process kinetics and mechanistic insights. Chemosphere 243, 125366 (2020). https://doi.org/10.1016/j.chemosphere.2019.125366

    Article  CAS  Google Scholar 

  16. D.L. Dai, J.H. Qiu, M. Li, J. Xu, L. Zhang, J.F. Yao, Construction of two-dimensional BiOI on carboxyl-rich MIL-121 for visible-light photocatalytic degradation of tetracycline. J. Alloys Compd. 872, 159711 (2021). https://doi.org/10.1016/j.jallcom.2021.159711

    Article  CAS  Google Scholar 

  17. J.C. Lyu, Z. Hu, Z.L. Li, M. Ge, Removal of tetracycline by BiOBr microspheres with oxygen vacancies: combination of adsorption and photocatalysis. J. Phys. Chem. Solids. 129, 61–70 (2019). https://doi.org/10.1016/j.jpcs.2018.12.041

    Article  CAS  Google Scholar 

  18. Y.P. Bao, W.J. Lee, C.T. Guan, Y.N. Liang, T.T. Lim, X. Hu, Highly efficient activation of peroxymonosulfate by bismuth oxybromide for sulfamethoxazole degradation under ambient conditions: synthesis, performance, kinetics and mechanisms. Sep. Purif. Technol. 276, 119203 (2021). https://doi.org/10.1016/j.seppur.2021.119203

    Article  CAS  Google Scholar 

  19. L. Qin, Z.H. Wang, Y.K. Fu, C. Lai, X.G. Liu, B.S. Li, S.Y. Liu, H. Yi, L. Li, M.M. Zhang, Z.W. Li, W.C. Cao, Q.Y. Niu, Gold nanoparticles-modified MnFe2O4 with synergistic catalysis for photo-Fenton degradation of tetracycline under neutral pH. J. Hazard. Mater. 414, 125448 (2021). https://doi.org/10.1016/j.jhazmat.2021.125448

    Article  CAS  Google Scholar 

  20. S.F. Tang, M.Z. Zhao, D.L. Yuan, X. Li, X.Y. Zhang, Z.B. Wang, T.F. Jiao, K. Wang, MnFe2O4 nanoparticles promoted electrochemical oxidation coupling with persulfate activation for tetracycline degradation. Sep. Purif. Technol. 255, 117690 (2021). https://doi.org/10.1016/j.seppur.2020.117690

    Article  CAS  Google Scholar 

  21. Z. Hu, Q.B. He, Ming G, Photocatalytic degradation of organic contaminants by magnetic Ag3PO4/MFe2O4 (M=Zn, Ni, Co) composites: a comparative study and a new insight into mechanism. J Mater Sci: Mater Electron. 32, 827–842 (2021). https://doi.org/10.1007/s10854-020-04861-y

    Article  CAS  Google Scholar 

  22. H.B. Yu, J.H. Huang, L.B. Jiang, L.J. Leng, K.X. Yi, W. Zhang, C.Y. Zhang, X.Z. Yuan, In situ construction of Sn-doped structurally compatible heterojunction with enhanced interfacial electric field for photocatalytic pollutants removal and CO2 reduction. Appl. Catal. B Environ. 298, 120618 (2021). https://doi.org/10.1016/j.apcatb.2021.120618

    Article  CAS  Google Scholar 

  23. H.D. Qin, Y.C. Yang, W. Shi, Y.B. She, Heterogeneous Fenton degradation of ofloxacin catalyzed by magnetic nanostructured MnFe2O4 with different morphologies. Environ. Sci. Pollut. Res. 28, 26558–26570 (2021). https://doi.org/10.1007/s11356-021-12548-y

    Article  CAS  Google Scholar 

  24. A. Shoja, A. Habibi-Yangjeh, M. Mousavi, S. Ghosh, BiOBr and BiOCl decorated on TiO2 QDs: impressively increased photocatalytic performance for the degradation of pollutants under visible light. Adv. Powder Technol. 31, 3582–3596 (2020). https://doi.org/10.1016/j.apt.2020.07.002

    Article  CAS  Google Scholar 

  25. M. Verma, A. Kumar, K.P. Singh, R. Kumar, V. Kumar, C.M. Srivastava, V. Rawat, G. Rao, S. Kumari, P. Sharma, H. Kim, Graphene oxide-manganese ferrite (GO-MnFe2O4) nanocomposite: one-pot hydrothermal synthesis and its use for adsorptive removal of Pb2+ ions from aqueous medium. J. Mol. Liq. 315, 113769 (2020). https://doi.org/10.1016/j.molliq.2020.113769

    Article  CAS  Google Scholar 

  26. W. Wei, H.Y. Gong, L. Sheng, H.F. Wu, S.G. Zhu, L. Feng, X.H. Li, W.H. You, Highly efficient photocatalytic activity and mechanism of novel Er3+ and Tb3+ co-doped BiOBr/g-C3N5 towards sulfamethoxazole degradation. Ceram. Int. 47, 24062–24072 (2021). https://doi.org/10.1016/j.ceramint.2021.05.116

    Article  CAS  Google Scholar 

  27. X. Wang, L. Jiang, K.X. Li, J. Wang, D.W. Fang, Y.C. Zhang, D.M. Tian, Z.H. Zhang, D.D. Dionysiou, Fabrication of novel Z-scheme SrTiO3/MnFe2O4 system with double-response activity for simultaneous microwave-induced and photocatalytic degradation of tetracycline and mechanism insight. Chem. Eng. J. 400, 125981 (2020). https://doi.org/10.1016/j.cej.2020.125981

    Article  CAS  Google Scholar 

  28. F. Mushtaq, M. Zahid, A. Mansha, I.A. Bhatti, G. Mustafa, S. Nasir, M. Yaseen, MnFe2O4/coal fly ash nanocomposite: a novel sunlight-active magnetic photocatalyst for dye degradation. Int. J. Environ. Sci. Technol. 17, 4233–4248 (2020). https://doi.org/10.1007/s13762-020-02777-y

    Article  CAS  Google Scholar 

  29. T. Bavani, J. Madhavan, S. Prasad, M.S. AlSalhi, M. ALJaffreh, S. Vijayanand, Fabrication of novel AgVO3/BiOI nanocomposite photocatalyst with photoelectrochemical activity towards the degradation of Rhodamine B under visible light irradiation. Environ. Res. 200, 111365 (2021). https://doi.org/10.1016/j.envres.2021.111365

  30. L. Wang, X.P. Min, X.Y. Sui, J.H. Chen, Y. Wang, Facile construction of novel BiOBr/Bi12O17Cl2 heterojunction composites with enhanced photocatalytic performance. J. Colloid Interface Sci. 560, 21–33 (2020). https://doi.org/10.1016/j.jcis.2019.10.048

    Article  CAS  Google Scholar 

  31. K. Liu, H.B. Zhang, Y. Muhammad, T. Fu, R. Tang, Z.F. Tong, Y. Wang, Fabrication of n-n isotype BiOBr-Bi2WO6 heterojunctions by inserting Bi2WO6 nanosheets onto BiOBr microsphere for the superior photocatalytic degradation of ciprofloxacin and tetracycline. Sep. Purif. Technol. 274, 118992 (2021). https://doi.org/10.1016/j.seppur.2021.118992

    Article  CAS  Google Scholar 

  32. K. Ghorai, M. Bhattacharjee, D. Mandal, A. Hossain, T. Bhunia, M. Das, P.P. Ray, B. Show, P. Bera, T.K. Mandal, M.M. Seikh, A. Gayen, Facile synthesis of CuCr2O4/BiOBr nanocomposite and its photocatalytic activity towards RhB and tetracycline hydrochloride degradation under household visible LED light irradiation. J. Alloys Compd. 867, 157947 (2021). https://doi.org/10.1016/j.jallcom.2020.157947

    Article  CAS  Google Scholar 

  33. Y.L. Liu, J.Y. He, Y. Qi, Y.W. Wang, F. Long, M. Wang, Preparation of flower-like BiOBr/Bi2WO6 Z-scheme heterojunction through an ion exchange process with enhanced photocatalytic activity. Mater. Sci. Semicond. Process 137, 106195 (2022). https://doi.org/10.1016/j.mssp.2021.106195

    Article  CAS  Google Scholar 

  34. X.R. Zhang, W. Cao, C. Chen, C.Y. Jiang, Y.P. Wang, Photocatalytic activity and degradation mechanism of in-situ reduction Bi-doped self-assembled 3D flower-sphere UiO-66-NH2/BiOBr. Opt. Mater. X. 12, 100090 (2021). https://doi.org/10.1016/j.omx.2021.100090

    Article  CAS  Google Scholar 

  35. R.M. Li, H.W. Hu, Y.Y. Ma, X.Y. Liu, L.T. Zhang, S.R. Zhou, B.Y. Deng, H. Lin, H. Zhang, Persulfate enhanced photocatalytic degradation of bisphenol A over wasted batteries-derived ZnFe2O4 under visible light. J. Cleaner Prod. 276, 124246 (2020). https://doi.org/10.1016/j.jclepro.2020.124246

    Article  CAS  Google Scholar 

  36. Q.L. Ma, H.X. Zhang, X.Y. Zhang, B. Li, R.N. Guo, Q.F. Cheng, X.W. Cheng, Synthesis of magnetic CuO/MnFe2O4 nanocompisite and its high activity for degradation of levofloxacin by activation of persulfate. Chem. Eng. J. 360, 848–860 (2019). https://doi.org/10.1016/j.cej.2018.12.036

    Article  CAS  Google Scholar 

  37. Z.H. Wang, C. Lai, L. Qin, Y.K. Fu, J.F. He, D.L. Huang, B.S Li, M.M Zhang, S.Y. Liu, L. Li, W. Zhang, H. Yi, X.G. Liu, X.R. Zhou, ZIF-8-modified MnFe2O4 with high crystallinity and superior photo-Fenton catalytic activity by Zn-O-Fe structure for TC degradation. Chem. Eng. J. 392, 124851 (2020). https://doi.org/10.1016/j.cej.2020.124851

  38. S. Juntrapirom, S. Anuchai, O. Thongsook, S. Pornsuwan, P. Meepowpan, P. Thavornyutikarn, S. Phanichphant, D. Tantraviwat, B. Inceesungvorn, Photocatalytic activity enhancement of g-C3N4/BiOBr in selective transformation of primary amines to imines and its reaction mechanism. Chem. Eng. J. 394, 124934 (2020). https://doi.org/10.1016/j.cej.2020.124934

    Article  CAS  Google Scholar 

  39. X.J. Zhou, L.S. Kong, Z.Y. Jing, S.Q. Wang, Y.C. Lai, M. Xie, L. Ma, Z.Y. Feng, J.H Zhan, Facile synthesis of superparamagnetic beta-CD-MnFe2O4 as a peroxymonosulfate activator for efficient removal of 2,4-dichlorophenol: structure, performance, and mechanism. J. Hazard. Mater. 394, 122528 (2020). https://doi.org/10.1016/j.jhazmat.2020.122528

  40. W.D. Song, J.H. Zhao, X.H. Xie, W. Liu, S.X. Liu, H.B. Chang, C.Y. Wang, Novel BiOBr by compositing low-cost biochar for efficient ciprofloxacin removal: the synergy of adsorption and photocatalysis on the degradation kinetics and mechanism insight. RSC Adv. 11, 15369–15379 (2021). https://doi.org/10.1039/D1RA00941A

    Article  CAS  Google Scholar 

  41. adsorption and degradation studies, A. Jonidi Jafari, B. Kakavandi, N. Jaafarzadeh, R. Rezaei Kalantary, M. Ahmadi, A. Akbar Babaei, Fenton-like catalytic oxidation of tetracycline by AC@Fe3O4 as a heterogeneous persulfate activator. J. Ind. Eng. Chem. 45, 323–333 (2017). https://doi.org/10.1016/j.jiec.2016.09.044

    Article  CAS  Google Scholar 

  42. Z.Q. Yang, Y. Li, X.Y. Zhang, X.D. Cui, S. He, H. Liang, A. Ding, Sludge activated carbon-based CoFe2O4-SAC nanocomposites used as heterogeneous catalysts for degrading antibiotic norfloxacin through activating peroxymonosulfate. Chem. Eng. J. 384, 123319 (2020). https://doi.org/10.1016/j.cej.2019.123319

    Article  CAS  Google Scholar 

  43. J.C. Lyu, M. Ge, Z. Hu, C.S. Guo, One-pot synthesis of magnetic CuO/Fe2O3/CuFe2O4 nanocomposite to activate persulfate for levofloxacin removal: investigation of efficiency, mechanism and degradation route. Chem. Eng. J. 389, 124456 (2020). https://doi.org/10.1016/j.cej.2020.124456

    Article  CAS  Google Scholar 

  44. D. Karimipourfard, R. Eslamloueyan, N. Mehranbod, Novel heterogeneous degradation of mature landfill leachate using persulfate and magnetic CuFe2O4/RGO nanocatalyst. Process Saf. Environ. 131, 212–222 (2019). https://doi.org/10.1016/j.psep.2019.09.009

    Article  CAS  Google Scholar 

  45. P.J. Duan, T.F. Ma, Y. Yue, Y.W. Li, X. Zhang, Y.N. Shang, B.Y. Gao, Q.Z. Zhang, Q.Y. Yue, X. Xu, Fe/Mn nanoparticles encapsulated in nitrogen-doped carbon nanotubes as a peroxymonosulfate activator for acetamiprid degradation. Environ. Sci. Nano. 6, 1799–1811 (2019). https://doi.org/10.1039/C9EN00220K

    Article  CAS  Google Scholar 

  46. M. Ge, Z. Hu, J.L. Wei, Q.B. He, Z.X. He, Recent advances in persulfate-assisted TiO2-based photocatalysis for wastewater treatment: performances, mechanism and perspectives. J. Alloys Compd. 888, 161625 (2021). https://doi.org/10.1016/j.jallcom.2021.161625

    Article  CAS  Google Scholar 

  47. Y.J. Yao, J.C. Qin, Y.M. Cai, F.Y. Wei, F. Lu, S.B. Wang, Facile synthesis of magnetic ZnFe2O4-reduced graphene oxide hybrid and its photo-Fenton-like behavior under visible iradiation. Environ. Sci. Pollut. Res. Int. 21, 7296–7306 (2014). https://doi.org/10.1007/s11356-014-2645-x

    Article  CAS  Google Scholar 

  48. L. Zhu, Z. Shi, L. Deng, Y. Duan, Efficient degradation of sulfadiazine using magnetically recoverable MnFe2O4/δ-MnO2 hybrid as a heterogeneous catalyst of peroxymonosulfate. Colloids Surf. A. 609, 125637 (2021). https://doi.org/10.1016/j.colsurfa.2020.125637

    Article  CAS  Google Scholar 

  49. W. Peng, K. Zhang, F.X. Zong, C. Chen, Z.D. Fang, Enhancement of H2O2 decomposition by the synergistic effect on CuO-MnFe2O4 nanoparticles for sulfamethoxazole degradation over a wide pH range. J. Dispersion Sci. Technol. 41, 2211–2222 (2019). https://doi.org/10.1080/01932691.2019.1656639

    Article  CAS  Google Scholar 

  50. M.M. Zhang, Y. Gong, N. Ma, X. Zhao, Promoted photoelectrocatalytic degradation of BPA with peroxymonosulfate on a MnFe2O4 modified carbon paper cathode. Chem. Eng. J. 399, 125088 (2020). https://doi.org/10.1016/j.cej.2020.125088

    Article  CAS  Google Scholar 

  51. X.H. Yuan, T.L. Li, Y.Y. He, N.D. Xue, Degradation of TBBPA by nZVI activated persulfate in soil systems. Chemosphere 284, 131166 (2021). https://doi.org/10.1016/j.chemosphere.2021.131166

    Article  CAS  Google Scholar 

  52. J.N. Yu, Z.L. Zhu, H. Zhang, Y.L. Qiu, D.Q. Yin, Fe-nitrogen-doped carbon with dual active sites for efficient degradation of aromatic pollutants via peroxymonosulfate activation. Chem. Eng. J. 427, 130898 (2022). https://doi.org/10.1016/j.cej.2021.130898

    Article  CAS  Google Scholar 

  53. J. Wang, B.R. Gao, M.M. Dou, X. Huang, Z.K. Ma, A porous g-C3N4 nanosheets containing nitrogen defects for enhanced photocatalytic removal meropenem: mechanism, degradation pathway and DFT calculation. Environ. Res. 184, 109339 (2020). https://doi.org/10.1016/j.envres.2020.109339

    Article  CAS  Google Scholar 

  54. B.R. Ma, S.S. Xin, Y.J. Xin, X.M. Ma, C.L. Zhang, M.C. Gao, F. Ma, Y.M. Ma, Visible-light-driven photoelectrocatalytic degradation of p-chloronitrobenzene by BiOBr/TiO2 nanotube arrays photoelectrodes: mechanisms, degradation pathway and DFT calculation. Sep. Purif. Technol. 268, 118699 (2021). https://doi.org/10.1016/j.seppur.2021.118699

    Article  CAS  Google Scholar 

  55. T.Y. Shen, P. Wang, L.M. Hu, Q. Hu, X.J. Wang, G.S. Zhang, Adsorption of 4-chlorophenol by wheat straw biochar and its regeneration with persulfate under microwave irradiation. J. Environ. Chem. Eng. 9, 105353 (2021). https://doi.org/10.1016/j.jece.2021.105353

    Article  CAS  Google Scholar 

  56. Z.Y. Lu, G.S. Zhou, M.S. Song, D.D. Wang, P.W. Huo, W.Q. Fan, H.J. Dong, H. Tang, F. Yan, G.Z. Xing, Magnetic functional heterojunction reactors with 3D specific recognition for selective photocatalysis and synergistic photodegradation in binary antibiotic solutions. J. Mater. Chem. A. 7, 13986–14000 (2019). https://doi.org/10.1039/C9TA01863H

    Article  CAS  Google Scholar 

  57. S.J. Li, C.C. Wang, M.J. Cai, F. Yang, Y.P. Liu, J.L. Chen, P. Zhang, X. Li, X.B. Chen, Facile fabrication of TaON/Bi2MoO6 core–shell S-scheme heterojunction nanofibers for boosting visible-light catalytic levofloxacin degradation and Cr(VI) reduction. Chem. Eng. J. 428, 131158 (2022). https://doi.org/10.1016/j.cej.2021.131158

    Article  CAS  Google Scholar 

  58. M. Sabri, A. Habibi-Yangjeh, H. Chand, V. Krishnan, Activation of persulfate by novel TiO2/FeOCl photocatalyst under visible light: facile synthesis and high photocatalytic performance. Sep. Purif. Technol. 250, 117268 (2020). https://doi.org/10.1016/j.seppur.2020.117268

    Article  CAS  Google Scholar 

  59. W.M. Xiang, Q.Y. Ji, C.M. Xu, Y. Guo, Y.Z. Liu, D.Y. Sun, W.W. Zhou, Z. Xu, C.D. Qi, S.G. Yang, S.Y. Li, C. Sun, H. He, Accelerated photocatalytic degradation of iohexol over Co3O4/g-C3N4/Bi2O2CO3 of p-n/n-n dual heterojunction under simulated sunlight by persulfate. Appl. Catal. B Environ. 285, 119847 (2021). https://doi.org/10.1016/j.apcatb.2020.119847

    Article  CAS  Google Scholar 

  60. Z.R. Zhou, Z.R. Shen, C.L. Song, M.M. Li, H. Li, S.H. Zhan, Boosting the activation of molecular oxygen and the degradation of tetracycline over high loading Ag single atomic catalyst. Water Res. 201, 117314 (2021). https://doi.org/10.1016/j.watres.2021.117314

    Article  CAS  Google Scholar 

  61. X.J. Yu, H.R. Qiu, Z. Wang, B. Wang, Q.N. Meng, S.D. Sun, Y.F. Tang, K. Zhao, Constructing the Z-scheme TiO2/Au/BiOI nanocomposite for enhanced photocatalytic nitrogen fixation. Appl. Surf. Sci. 556, 149785 (2021). https://doi.org/10.1016/j.apsusc.2021.149785

    Article  CAS  Google Scholar 

  62. Y.H. Shi, J.S. Li, D.J. Wan, J.H. Huang, Y.D. Liu, Peroxymonosulfate-enhanced photocatalysis by carbonyl-modified g-C3N4 for effective degradation of the tetracycline hydrochloride. Sci. Total Environ. 749, 142313 (2020). https://doi.org/10.1016/j.scitotenv.2020.142313

    Article  CAS  Google Scholar 

  63. L.W. Chen, D.H. Ding, C. Liu, H. Cai, Y. Qu, S.J. Yang, Y. Gao, T.M. Cai, Degradation of norfloxacin by CoFe2O4-GO composite coupled with peroxymonosulfate: a comparative study and mechanistic consideration. Chem. Eng. J. 334, 273–284 (2018). https://doi.org/10.1016/j.cej.2017.10.040

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work was supported by the Natural Science Foundation of Hebei Province (B2019209373).

Author information

Authors and Affiliations

Authors

Contributions

QH performed the experiments on catalyst preparation, photocatalytic degradation of tetracycline and mechanism study. MG and QH analyzed the experimental data and wrote the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Ming Ge.

Ethics declarations

Conflict of interest

There are no conflict of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, Q., Ge, M. Visible-light activation of peroxydisulfate by magnetic BiOBr/MnFe2O4 nanocomposite toward degradation of tetracycline. J Mater Sci: Mater Electron 33, 5859–5877 (2022). https://doi.org/10.1007/s10854-022-07768-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-07768-y

Navigation