Skip to main content

Advertisement

Log in

Core–shell CoTiO3@MnO2 heterostructure for the photothermal degradation of tetracycline

  • Chemical routes to materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The photothermal process exhibits the largest energy conversion efficiency among all solar energy utilization processes. In this study, a core–shell CoTiO3@MnO2 (CTM) composite photothermal catalyst was synthesized by supporting MnO2 on CoTiO3 by hydrothermal synthesis. Binding to peroxymonosulfate (PMS) heterogeneous catalyst removed tetracycline in wastewater. The new catalyst was characterized by FT-IR, UV–Vis, XRD, BET, SEM, TEM, and so on. Kinetic analysis showed that CTM activated PMS at a rate of 3.2 and 3.5 times higher than that of pure light and heat conditions, with complete degradation of tetracycline (TC). Since the outer MnO2 layer converted the absorbed solar energy into thermal energy, PMS was activated to generate active species while performing electron transfer, which resulted in a considerably improved catalytic efficiency. To prove the wide applicability of the catalyst, other pollutants were degraded, including bisphenol A (BPA), metronidazole (MNZ), and methyl orange (MO). The three pollutants were degraded within 40 min. Finally, our findings demonstrated the mechanism of the photothermal degradation process and provided a novel approach for environmental remediation using renewable solar energy.

Graphical Abstract

In this paper, the degradation efficiency of CoTiO3 was improved by loading MnO2 on CoTiO3. Binding to peroxymonosulfate (PMS) heterogeneous catalyst activation for the catalytic degradation of tetracycline. It was found by experiments that the core-shell structure of the composite material CoTiO3@MnO2 had better photothermal catalysis efficiency than photocatalysis and thermal catalysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

Data availability

Data will be made available on request.

References

  1. Shen L, Chen J, Li N, He P, Li Z (2014) Rapid colorimetric sensing of tetracycline antibiotics with in situ growth of gold nanoparticles. Anal Chim Acta 839:83. https://doi.org/10.1016/j.aca.2014.05.021

    Article  CAS  Google Scholar 

  2. Yan C, Yang Y, Zhou J et al (2013) Antibiotics in the surface water of the Yangtze Estuary: occurrence, distribution and risk assessment. Environ Pollut 175:22. https://doi.org/10.1016/j.envpol.2012.12.008

    Article  CAS  Google Scholar 

  3. Zhan L, Xia Z, Xu Z, Xie B (2021) Study on the remediation of tetracycline antibiotics and roxarsone contaminated soil. Environ Pollut 271:116312. https://doi.org/10.1016/j.envpol.2020.116312

    Article  CAS  Google Scholar 

  4. Tonetti MS (1998) Local delivery of terracycline: from concept to clinical application*. J Clin Periodontol 25:969. https://doi.org/10.1111/j.1600-051X.1998.tb02400.x

    Article  CAS  Google Scholar 

  5. Kim H, Hong Y, Park J-e, Sharma VK, Cho S-i (2013) Sulfonamides and tetracyclines in livestock wastewater. Chemosphere 91:888. https://doi.org/10.1016/j.chemosphere.2013.02.027

    Article  CAS  Google Scholar 

  6. Leong S, Li D, Hapgood K, Zhang X, Wang H (2016) Ni(OH)2 decorated rutile TiO2 for efficient removal of tetracycline from wastewater. Appl Catal B 198:224. https://doi.org/10.1016/j.apcatb.2016.05.043

    Article  CAS  Google Scholar 

  7. Shi W, Guo F, Yuan S (2017) In situ synthesis of Z-scheme Ag3PO4/CuBi2O4 photocatalysts and enhanced photocatalytic performance for the degradation of tetracycline under visible light irradiation. Appl Catal B 209:720. https://doi.org/10.1016/j.apcatb.2017.03.048

    Article  CAS  Google Scholar 

  8. Elimelech M, Phillip William A (2011) The future of seawater desalination: energy, technology, and the environment. Science 333:712. https://doi.org/10.1126/science.1200488

    Article  CAS  Google Scholar 

  9. Ni G, Li G, Boriskina SV et al (2016) Steam generation under one sun enabled by a floating structure with thermal concentration. Nat Energy. https://doi.org/10.1038/nenergy.2016.126

    Article  Google Scholar 

  10. Boddy PJ (1968) Oxygen Evolution on Semiconducting TiO2. J Electrochem Soc 115:199. https://doi.org/10.1149/1.2411080

    Article  CAS  Google Scholar 

  11. Aslam M, Fazal DB, Ahmad F et al (2022) Photocatalytic degradation of recalcitrant pollutants of greywater. Catalysts. https://doi.org/10.3390/catal12050557

    Article  Google Scholar 

  12. Turkten N, Natali Sora I, Tomruk A, Bekbolet M (2018) photocatalytic degradation of humic acids using LaFeO3. Catalysts. https://doi.org/10.3390/catal8120630

    Article  Google Scholar 

  13. Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238:37. https://doi.org/10.1038/238037a0

    Article  CAS  Google Scholar 

  14. Chen R, Jalili Z, Tayebee R (2021) UV-visible light-induced photochemical synthesis of benzimidazoles by coomassie brilliant blue coated on W-ZnO@NH2 nanoparticles. RSC Adv 11:16359. https://doi.org/10.1039/D0RA10843J

    Article  CAS  Google Scholar 

  15. Jarrahi M, Tayebee R, Maleki B, Salimi A (2021) One-pot multicomponent green LED photoinduced synthesis of chromeno[4,3-b]chromenes catalyzed by a new nanophotocatalyst histaminium tetrachlorozincate. RSC Adv 11:19723. https://doi.org/10.1039/D1RA00189B

    Article  CAS  Google Scholar 

  16. Li B, Tayebee R, Esmaeili E, Namaghi MS, Maleki B (2020) Selective photocatalytic oxidation of aromatic alcohols to aldehydes with air by magnetic WO3ZnO/Fe3O4. in situ photochemical synthesis of 2-substituted benzimidazoles. RSC Adv 10:40725. https://doi.org/10.1039/D0RA08403D

    Article  CAS  Google Scholar 

  17. Mohammadzadeh Kakhki R, Tayebee R, Ahsani F (2017) New and highly efficient Ag doped ZnO visible nano photocatalyst for removing of methylene blue. J Mater Sci: Mater Electron 28(8):5941–5952. https://doi.org/10.1007/s10854-016-6268-5

    Article  CAS  Google Scholar 

  18. Parvizi E, Tayebee R, Koushki E (2019) Mg-doped ZnO and Zn-doped MgO semiconductor nanoparticles; synthesis and catalytic optical and electro-optical characterization. Semiconductors 53:1769. https://doi.org/10.1134/S1063782619130141

    Article  CAS  Google Scholar 

  19. Parvizi E, Tayebee R, Koushki E et al (2019) Photocatalytic efficacy of supported tetrazine on MgZnO nanoparticles for the heterogeneous photodegradation of methylene blue and ciprofloxacin. RSC Adv 9:23818. https://doi.org/10.1039/C9RA04702F

    Article  CAS  Google Scholar 

  20. Tayebee R, Esmaeili E, Maleki B, Khoshniat A, Chahkandi M, Mollania N (2020) Photodegradation of methylene blue and some emerging pharmaceutical micropollutants with an aqueous suspension of WZnO-NH2@H3PW12O40 nanocomposite. J Mol Liq 317:113928. https://doi.org/10.1016/j.molliq.2020.113928

    Article  CAS  Google Scholar 

  21. Wei Z, Abbaspour S, Tayebee R (2021) Nickel Nanoparticles originated from cressa leaf extract in the preparation of a novel melem@Ni-HPA photocatalyst for the synthesis of some chromenes and a preliminary MTT assay on the anticancer activity of the nanocomposite. Polycycl Aromat Compd. https://doi.org/10.1080/10406638.2021.2019063

    Article  Google Scholar 

  22. Ramanavicius S, Ramanavicius A (2020) Insights in the application of stoichiometric and non-stoichiometric titanium oxides for the design of sensors for the determination of gases and VOCs (TiO2−x and TinO2n−1 vs. TiO2). Sensors 20:6833. https://doi.org/10.3390/s20236833

    Article  CAS  Google Scholar 

  23. Sayegh S, Abid M, Tanos F et al (2022) N-doped TiO2 nanotubes synthesized by atomic layer deposition for acetaminophen degradation. Colloids Surf A 655:130213. https://doi.org/10.1016/j.colsurfa.2022.130213

    Article  CAS  Google Scholar 

  24. Du Z, Cui C, Zhang S et al (2020) Visible-light-driven photocatalytic degradation of rhodamine B using Bi2WO6/GO deposited on polyethylene terephthalate fabric. JLSE 2:16. https://doi.org/10.1186/s42825-020-00029-w

    Article  Google Scholar 

  25. Bao Y, Guo R, Gao M, Kang Q, Ma J (2021) Morphology control of 3D hierarchical urchin-like hollow SiO2@TiO2 spheres for photocatalytic degradation: Influence of calcination temperature. J Alloys Compd 853:157202. https://doi.org/10.1016/j.jallcom.2020.157202

    Article  CAS  Google Scholar 

  26. Yu R, Lan T, Jiang J, Peng H, Liang R, Liu G (2020) Facile fabrication of functional cellulose paper with high-capacity immobilization of Ag nanoparticles for catalytic applications for tannery wastewater. JLSE 2:6. https://doi.org/10.1186/s42825-020-00019-y

    Article  Google Scholar 

  27. Ghoussoub M, Xia M, Duchesne PN, Segal D, Ozin G (2019) Principles of photothermal gas-phase heterogeneous CO2 catalysis. Energy Environ Sci 12:1122. https://doi.org/10.1039/C8EE02790K

    Article  CAS  Google Scholar 

  28. Zhu L, Gao M, Peh CKN, Ho GW (2018) Solar-driven photothermal nanostructured materials designs and prerequisites for evaporation and catalysis applications. Mater Horiz 5:323. https://doi.org/10.1039/c7mh01064h

    Article  CAS  Google Scholar 

  29. Ma R, Sun J, Li DH, Wei JJ (2020) Review of synergistic photo-thermo-catalysis: mechanisms, materials and applications. Int J Hydrogen Energy 45:30288. https://doi.org/10.1016/j.ijhydene.2020.08.127

    Article  CAS  Google Scholar 

  30. Xie W, Li Y, Shi W et al (2012) Novel effect of significant enhancement of gas-phase photocatalytic efficiency for nano ZnO. Chem Eng J 213:218. https://doi.org/10.1016/j.cej.2012.10.004

    Article  CAS  Google Scholar 

  31. Gu Y, Jiao Y, Zhou X, Wu A, Buhe B, Fu H (2018) Strongly coupled Ag/TiO2 heterojunctions for effective and stable photothermal catalytic reduction of 4-nitrophenol. Nano Res 11:126. https://doi.org/10.1007/s12274-017-1612-5

    Article  CAS  Google Scholar 

  32. Lai B-H, Lin Y-R, Chen D-H (2013) Fabrication of LaB6@SiO2/Au composite nanoparticles as a catalyst with near infrared photothermally enhanced activity. Chem Eng J 223:418. https://doi.org/10.1016/j.cej.2013.02.109

    Article  CAS  Google Scholar 

  33. Christopher P, Xin H, Linic S (2011) Visible-light-enhanced catalytic oxidation reactions on plasmonic silver nanostructures. Nat Chem 3:467. https://doi.org/10.1038/nchem.1032

    Article  CAS  Google Scholar 

  34. Lin L, Wang K, Yang K, Chen X, Fu X, Dai W (2017) The visible-light-assisted thermocatalytic methanation of CO2 over Ru/TiO(2–x)Nx. Appl Catal B 204:440. https://doi.org/10.1016/j.apcatb.2016.11.054

    Article  CAS  Google Scholar 

  35. Liu F, Zeng M, Li Y, Yang Y, Mao M, Zhao X (2016) UV–vis–infrared light driven thermocatalytic activity of octahedral layered birnessite nanoflowers enhanced by a novel photoactivation. Adv Funct Mater 26:4518. https://doi.org/10.1002/adfm.201601046

    Article  CAS  Google Scholar 

  36. Zeng M, Li Y, Mao M, Bai J, Ren L, Zhao X (2015) Synergetic effect between photocatalysis on TiO2 and thermocatalysis on CeO2 for gas-phase oxidation of benzene on TiO2/CeO2 nanocomposites. ACS Catal 5:3278. https://doi.org/10.1021/acscatal.5b00292

    Article  CAS  Google Scholar 

  37. Low J, Yu J, Jaroniec M, Wageh S, Al-Ghamdi AA (2017) Heterojunction photocatalysts. Adv Mater 29:1601694. https://doi.org/10.1002/adma.201601694

    Article  CAS  Google Scholar 

  38. Wang Y, Zhao Y, Liu J et al (2020) Manganese oxide modified nickel catalysts for photothermal co hydrogenation to light olefins. Adv Mater 10:1902860. https://doi.org/10.1002/aenm.201902860

    Article  CAS  Google Scholar 

  39. Yuan R, Jiang Z, Wang Z et al (2020) Hierarchical MnO2 nanoflowers blooming on 3D nickel foam: a novel micro-macro catalyst for peroxymonosulfate activation. J Colloid Interface Sci 571:142. https://doi.org/10.1016/j.jcis.2020.03.041

    Article  CAS  Google Scholar 

  40. Khalid MU, Warsi MF, Shakir I et al (2020) Al3+/Ag1+ induced phase transformation of MnO2 nanoparticles from α to β and their enhanced electrical and photocatalytic properties. Ceram Int 46:9913. https://doi.org/10.1016/j.ceramint.2020.01.143

    Article  CAS  Google Scholar 

  41. Liang S, Teng F, Bulgan G, Zong R, Zhu Y (2008) Effect of phase structure of MnO2 nanorod catalyst on the activity for CO oxidation. J Phys Chem C 112:5307. https://doi.org/10.1021/jp0774995

    Article  CAS  Google Scholar 

  42. Warshagha MZA, Muneer M (2022) Direct Z-scheme AgBr/β-MnO2 photocatalysts for highly efficient photocatalytic and anticancer activity. ACS Omega 7:30171. https://doi.org/10.1021/acsomega.2c03260

    Article  CAS  Google Scholar 

  43. Chengjun R, Tao Z, Guoqiang C, Yaoqiang C, Maochu G (2006) Thermo-photocatalytic degradation of gas-phase benzene over Pt-TiO2/CeO2-MnO2 composite catalyst. Chin J Catal 27:1048

    Google Scholar 

  44. Ren C, Zhou L, Duan Y, Chen Y (2012) Synergetic effect of thermo-photocatalytic oxidation of benzene on Pt-TiO2/Ce-MnOx. J Rare Earths 30:1106. https://doi.org/10.1016/S1002-0721(12)60188-4

    Article  CAS  Google Scholar 

  45. Xia D, Liu H, Xu B et al (2019) Single Ag atom engineered 3D-MnO2 porous hollow microspheres for rapid photothermocatalytic inactivation of E coli under solar light. Appl Catal B 245:177. https://doi.org/10.1016/j.apcatb.2018.12.056

    Article  CAS  Google Scholar 

  46. Yang Y, Li Y, Zeng M et al (2018) UV–vis-infrared light-driven photothermocatalytic abatement of CO on Cu doped ramsdellite MnO2 nanosheets enhanced by a photoactivation effect. Appl Catal B 224:751. https://doi.org/10.1016/j.apcatb.2017.11.017

    Article  CAS  Google Scholar 

  47. Yang Y, Wu S, Li Y, Zhang Q, Zhao X (2019) Efficient UV-vis-IR photothermocatalytic selective ethanol oxidation on MnOx/TiO2 nanocomposite significantly enhanced by a novel photoactivation. J Mater Chem A 8:1254–1264. https://doi.org/10.1039/C9TA12531K

    Article  Google Scholar 

  48. Yin RY, Sun PF, Cheng LJ et al (2022) A three-dimensional melamine sponge modified with MnOx mixed graphitic carbon nitride for photothermal catalysis of formaldehyde. Molecules 27(16):5216. https://doi.org/10.3390/molecules27165216

    Article  CAS  Google Scholar 

  49. Zheng Y, Wang W, Jiang D, Zhang L (2016) Amorphous MnOx modified Co3O4 for formaldehyde oxidation: improved low-temperature catalytic and photothermocatalytic activity. Chem Eng J 284:21. https://doi.org/10.1016/j.cej.2015.08.137

    Article  CAS  Google Scholar 

  50. Eslami A, Hashemi M, Ghanbari F (2018) Degradation of 4-chlorophenol using catalyzed peroxymonosulfate with nano-MnO2/UV irradiation: toxicity assessment and evaluation for industrial wastewater treatment. J Clean Prod 195:1389. https://doi.org/10.1016/j.jclepro.2018.05.137

    Article  CAS  Google Scholar 

  51. Huang Y, Tian X, Nie Y, Yang C, Wang Y (2018) Enhanced peroxymonosulfate activation for phenol degradation over MnO2 at pH 3.5–9.0 via Cu(II) substitution. J Hazard Mater 360:303. https://doi.org/10.1016/j.jhazmat.2018.08.028

    Article  CAS  Google Scholar 

  52. Ndayiragije S, Zhang Y, Zhou Y et al (2022) Mechanochemically tailoring oxygen vacancies of MnO2 for efficient degradation of tetrabromobisphenol A with peroxymonosulfate. Appl Catal B 307:121168. https://doi.org/10.1016/j.apcatb.2022.121168

    Article  CAS  Google Scholar 

  53. Wang G, Efstratiou A, Adjou Moumouni PF et al (2016) Primary Babesia rodhaini infection followed by recovery confers protective immunity against B. rodhaini reinfection and Babesia microti challenge infection in mice. Exp Parasitol 169:6. https://doi.org/10.1016/j.exppara.2016.07.003

    Article  CAS  Google Scholar 

  54. Shi L, He Y, Wang X, Hu Y (2018) Recyclable photo-thermal conversion and purification systems via Fe3O4@TiO2 nanoparticles. Energy Convers Manag 171:272. https://doi.org/10.1016/j.enconman.2018.05.106

    Article  CAS  Google Scholar 

  55. Hu F, Nan H, Wang M et al (2021) Construction of core-shell BaFe12O19@MnO2 composite for effectively enhancing microwave absorption performance. Ceram Int 47:16579. https://doi.org/10.1016/j.ceramint.2021.02.229

    Article  CAS  Google Scholar 

  56. Zhang T, Guo Y, Li C et al (2020) The effect of LaFeO3@MnO2 on the thermal behavior of energetic compounds: an efficient catalyst with core-shell structure. Adv Powder Technol 31:4510. https://doi.org/10.1016/j.apt.2020.09.027

    Article  CAS  Google Scholar 

  57. Fathy NA, El-Shafey SE, El-Shafey OI (2017) Synthesis of a novel MnO2@carbon nanotubes-graphene hybrid catalyst (MnO2@CNT-G) for catalytic oxidation of basic red 18 dye (BR18). J Water Process 17:95. https://doi.org/10.1016/j.jwpe.2017.03.010

    Article  Google Scholar 

  58. Ye R, Fang H, Zheng Y-Z, Li N, Wang Y, Tao X (2016) Fabrication of CoTiO3/g-C3N4 Hybrid photocatalysts with enhanced H2 evolution: Z-scheme photocatalytic mechanism insight. ACS Appl Mater Interfaces 8:13879. https://doi.org/10.1021/acsami.6b01850

    Article  CAS  Google Scholar 

  59. Chen JH, Huang TB, Wu X, Landheer D, Lei TF, Chao TS (2007) Performance improvement of CoTiO3 High-k dielectrics with nitrogen incorporation. J Electrochem Soc 154:G18. https://doi.org/10.1149/1.2388733

    Article  CAS  Google Scholar 

  60. Fu J, Wang C, Feng Z, Zhang R (2018) Ultralong α-MnO2 nanowires capable of catalytically degrading methylene blue at low temperature. Catal Lett 148:2822. https://doi.org/10.1007/s10562-018-2454-9

    Article  CAS  Google Scholar 

  61. Kumar S, Saeed G, Kim NH, Lee JH (2018) Hierarchical nanohoneycomb-like CoMoO4–MnO2 core–shell and Fe2O3 nanosheet arrays on 3D graphene foam with excellent supercapacitive performance. J Mater Chem A 6:7182. https://doi.org/10.1039/C8TA00889B

    Article  CAS  Google Scholar 

  62. Goyal A, Sharma R, Bansal S, Tikoo KB, Kumar V, Singhal S (2018) Functionalized core-shell nanostructures with inherent magnetic character: outperforming candidates for the activation of PMS. Adv Powder Technol 29:245. https://doi.org/10.1016/j.apt.2017.11.008

    Article  CAS  Google Scholar 

  63. Li X, Hou T, Yan L, Shan L, Meng X, Zhao Y (2020) Efficient degradation of tetracycline by CoFeLa-layered double hydroxides catalyzed peroxymonosulfate: synergistic effect of radical and nonradical pathways. J Hazard Mater 398:122884. https://doi.org/10.1016/j.jhazmat.2020.122884

    Article  CAS  Google Scholar 

  64. Wang J, Wang S (2020) Reactive species in advanced oxidation processes: formation, identification and reaction mechanism. Chem Eng J 401:126158. https://doi.org/10.1016/j.cej.2020.126158

    Article  CAS  Google Scholar 

  65. Wang H, Gao Q, Li H, Han B, Xia K, Zhou C (2019) One-pot synthesis of a novel hierarchical Co(II)-doped TiO2 nanostructure: toward highly active and durable catalyst of peroxymonosulfate activation for degradation of antibiotics and other organic pollutants. Chem Eng J 368:377. https://doi.org/10.1016/j.cej.2019.02.124

    Article  CAS  Google Scholar 

  66. Xu LJ, Chu W, Gan L (2015) Environmental application of graphene-based CoFe2O4 as an activator of peroxymonosulfate for the degradation of a plasticizer. Chem Eng J 263:435. https://doi.org/10.1016/j.cej.2014.11.065

    Article  CAS  Google Scholar 

  67. Saputra E, Muhammad S, Sun H, Ang HM, Tadé MO, Wang S (2013) Different crystallographic one-dimensional MnO2 nanomaterials and their superior performance in catalytic phenol degradation. Environ Sci Technol 47:5882. https://doi.org/10.1021/es400878c

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Hainan Provincial Natural Science Foundation of China (Grant Nos. 421RC483, 2019RC141, and ZDYF2021GXJS209); the National Natural Science Foundation of China (Grant Nos. 52161030 and 51901059); and the Foundation of State Key Laboratory of Marine Resource Utilization in South China Sea (Hainan University) (Grant No. MRUKF2021031).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jieqiong Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Handling Editor: Pedro Camargo.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 643 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, X., Wei, S., Ma, X. et al. Core–shell CoTiO3@MnO2 heterostructure for the photothermal degradation of tetracycline. J Mater Sci 58, 3551–3567 (2023). https://doi.org/10.1007/s10853-023-08180-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-023-08180-5

Navigation