Skip to main content
Log in

High piezoelectricity of low-temperature sintered Li2CO3-added PNN–PZT relaxor ferroelectrics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

High piezoelectric properties (d33 = 936 pC/N, d33* = 1015 pm/V, and kp = 0.701) are obtained from 960 °C sintered PNN–PZT piezoceramics by adding Li2CO3. The introduction of Li+ ions into PNN–PZT ceramics causes the phase shifts to the morphotropic phase boundary (MPB) region, which has not been reported for lead-based ferroelectrics. The Li+ ion doping shifts the phase to the MPB region, which grows the grains and decreases the activation energy (Ea) of the domain wall motion, making the domain grow more easily. Meanwhile, the domain indicates that Li+ ion doping allows the domain to rotate more easily; therefore, the domain size grows from the nanometer to the micrometer regime. Unlike reported nano-domains that lead to high piezoelectric activities, the MPB and larger micro-domains in the PNN–PZT ceramics are responsible for the high piezoelectric response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Z.H. Yao, Y. Liu, Z. Song, Z.J. Wang, H. Hao, M.H. Cao, Z.Y. Yu, H.X. Liu, Structure and electrical properties of ternary BiFeO3-BaTiO3-PbTiO3 high-temperature piezoceramics. J. Adv. Ceram. 1, 227–231 (2012). https://doi.org/10.1007/s40145-012-0021-1

    Article  CAS  Google Scholar 

  2. T.L. Zhao, C.L. Fei, X.Y. Dai, J.J. Song, S.X. Dong, Structure and enhanced piezoelectric performance of BiScO3-PbTiO3-Pb(Ni1/3Nb2/3)O3 ternary high temperature piezoelectric ceramics. J. Alloys Compd. 806, 11–18 (2019). https://doi.org/10.1016/j.jallcom.2019.07.286

    Article  CAS  Google Scholar 

  3. D.W. Wang, M.S. Cao, S.J. Zhang, Piezoelectric properties of PbHfO3-PbTiO3-Pb(Mg1/3Nb2/3)O3 ternary ceramics. Phys. Status Solidi R 6, 135–137 (2012). https://doi.org/10.1002/pssr.201206015

    Article  CAS  Google Scholar 

  4. J.Z. Du, J.H. Qiu, K.J. Zhu, H.L. Ji, X.M. Pang, J. Luo, Effects of Fe2O3 doping on the microstructure and piezoelectric properties of 0.55Pb(Ni1/3Nb2/3)O3-0.45Pb(Zr0.3Ti0.7)O3 ceramics. Mater. Lett. 66, 153–155 (2012). https://doi.org/10.1016/j.matlet.2011.08.038

    Article  CAS  Google Scholar 

  5. J.Z. Du, J.H. Qiu, K.J. Zhu, H.L. Ji, Enhanced piezoelectric properties of 0.55Pb(Ni1/3Nb2/3)O3-0.135PbZrO3-0.315PbTiO3 ternary ceramics by optimizing sintering temperature. J. Electroceram. 32, 234–239 (2014). https://doi.org/10.1007/s10832-013-9879-8

    Article  CAS  Google Scholar 

  6. X.Y. Gao, J.G. Wu, Y. Yu, S.X. Dong, A modified barbell-shaped PNN-PZT-PIN piezoelectric ceramic energy harvester. Appl. Phys. Lett. 111, 212904 (2017). https://doi.org/10.1063/1.5001803

    Article  CAS  Google Scholar 

  7. F. Li, D.B. Lin, Z.B. Chen, Z.X. Cheng, J.L. Wang, C.C. Li, Z. Xu, Q.W. Huang, X.Z. Liao, L.Q. Chen, T.R. Shrout, S.J. Zhang, Ultrahigh piezoelectricity in ferroelectric ceramics by design. Nat. Mater. 17, 349–354 (2018). https://doi.org/10.1038/s41563-018-0034-4

    Article  CAS  Google Scholar 

  8. Y.X. Yan, Z.H. Liu, Z.M. Li, M.L. Zhang, D.Y. Zhang, Y.J. Feng, Improving piezoelectric properties of Pb(Ni, Nb)O3-Pb(Hf, Ti)O3 ceramics by LiF addition. Ceram Int. 44, 5790–5793 (2018). https://doi.org/10.1016/j.ceramint.2017.12.094

    Article  CAS  Google Scholar 

  9. Q.H. Guo, L.T. Hou, F. Li, F.Q. Xia, P.B. Wang, H. Hao, H.J. Sun, H.X. Liu, S.J. Zhang, Investigation of dielectric and piezoelectric properties in aliovalent Eu3+-modified Pb(Mg1/3Nb2/3)O3-PbTiO3 ceramics. J. Am. Ceram. Soc. 102, 7428–7435 (2019). https://doi.org/10.1111/jace.16653

    Article  CAS  Google Scholar 

  10. Y.X. Yan, Z.M. Li, Y.S. Xia, M. Zhao, M.L. Zhang, D.Y. Zhang, Ultra-high piezoelectric and dielectric properties of low-temperature-sintered lead hafnium titanate-lead niobium nickelate ceramics. Ceram. Int. 46, 5448–5453 (2020). https://doi.org/10.1016/j.ceramint.2019.10.166

    Article  CAS  Google Scholar 

  11. Y. Chen, D.Y. Zheng, Y.Y. Wang, Doping for inducing the formation of lead niobate-nicklate in piezo-ceramics. J. Alloys Compd. 845, 155903 (2020). https://doi.org/10.1016/j.jallcom.2020.155903

    Article  CAS  Google Scholar 

  12. Y.S. Xia, Z.M. Li, Y.G. Yan, M. Zhao, M.L. Zhang, D.Y. Zhang, Excellent piezoelectric properties of PNN-PHT ceramics sintered at low temperature with CuO addition. Int. J. Appl. Ceram. Technol. 17, 707–712 (2017). https://doi.org/10.1111/ijac.13345

    Article  CAS  Google Scholar 

  13. R. Nie, Q. Zhang, Y. Yue, H. Liu, Y.B. Chen, Q. Chen, J.G. Zhu, P. Yu, D.Q. Xiao, Phase structure-electrical property relationships in Pb(Ni1/3Nb2/3)O3-Pb(Zr, Ti)O3-based ceramics. J. Appl. Phys. 119, 124111 (2016). https://doi.org/10.1063/1.4945108

    Article  CAS  Google Scholar 

  14. H. Liu, R. Nie, Y. Yue, Q. Zhang, Q. Chen, J.G. Zhu, P. Yu, D.Q. Xiao, C.L. Wang, X.Y. Wang, Effect of MnO2 doping on piezoelectric, dielectric and ferroelectric properties of PNN-PZT ceramics. Ceram. Int. 41, 11359–11364 (2015). https://doi.org/10.1016/j.ceramint.2015.05.094

    Article  CAS  Google Scholar 

  15. J.Z. Du, J.H. Qiu, K.J. Zhu, H.L. Ji, Microstructure, temperature stability and electrical properties of ZnO-modified Pb(Ni1/3Nb2/3)O3-Pb(Fe1/2Nb1/2)O3-Pb(Zr0.3Ti0.7)O3 piezoelectric ceramics. Ceram. Int. 39, 9385–9390 (2013). https://doi.org/10.1016/j.ceramint.2013.05.055

    Article  CAS  Google Scholar 

  16. H. Chen, T. Pu, S. Fan, H. Liu, J. Zhu, Q. Chen, Enhanced electrical properties in low-temperature sintering PNN–PMW–PZT ceramics by Yb2O3 doping. Mater. Res. Bull. 146, 111576 (2022). https://doi.org/10.1016/j.materresbull.2021.111576

    Article  CAS  Google Scholar 

  17. J.Q. Ma, W.B. Ma, Q. Li, X.Y. Meng, B.B. Niu, Y.X. Guo, Low-temperature sintering and piezoelectric properties of Pb(Fe2/3W1/3)O3-added Pb(Zn1/3Nb2/3)O3-Pb(Ni1/3Nb2/3)O3-Pb(Zr, Ti)O3 ceramics. J. Mater. Sci.: Mater. Electron. 25, 3695–3702 (2014). https://doi.org/10.1007/s10854-014-2077-x

    Article  CAS  Google Scholar 

  18. J. Yoo, S. Lee, Piezoelectric properties of MnO2 doped low temperature sintering Pb(Mn1/3Nb2/3)O3-Pb(Ni1/3Nb2/3)O3-Pb(Zr0.50Ti0.50)O3 ceramics. J. Electroceram. 23, 432–436 (2009). https://doi.org/10.1007/s10832-008-9483-5

    Article  CAS  Google Scholar 

  19. Y. Jeong, K. Yoo, J. Yoo, Piezoelectric and dielectric characteristics of low-temperature-sintering Pb(Mg1/2W1/2)O3-Pb(Ni1/3Nb2/3)O3-Pb(Zr, Ti)O3 ceramics according to the amount of PNN substitution. J. Electroceram. 23, 387–391 (2009). https://doi.org/10.1007/s10832-008-9473-7

    Article  CAS  Google Scholar 

  20. D. Damjanovic, Comments on origins of enhanced piezoelectric properties in ferroelectrics. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 56, 1574–1585 (2009). https://doi.org/10.1109/TUFFC.2009.1222

    Article  Google Scholar 

  21. H.X. Fu, R.E. Cohen, Polarization rotation mechanism for ultrahigh electromechanical response in single-crystal piezoelectrics. Nature 403, 281–283 (2000). https://doi.org/10.1038/35002022

    Article  CAS  Google Scholar 

  22. J. Fu, R.H. Zuo, The A-site Li+ driven orthorhombic-tetragonal ferroelectric phase transition and evolving local structures in (Na, K)(Nb, Sb)O3–LiTaO3 lead-free ceramics. Appl. Phys. Lett. 102, 122902 (2013). https://doi.org/10.1063/1.4798830

    Article  CAS  Google Scholar 

  23. Y.D. Hou, L.M. Chang, M.K. Zhu, X.M. Song, H. Yan, Effect of Li2CO3 addition on the dielectric and piezoelectric responses in the low-temperature sintered 0.5PZN–0.5PZT systems. J. Appl. Phys. 102, 084507 (2007). https://doi.org/10.1063/1.2800264

    Article  CAS  Google Scholar 

  24. B.H. Toby, EXPGUI, a graphical user interface for GSAS. J. Appl. Crystallogr. 34, 210–213 (2001). https://doi.org/10.1107/S0021889801002242

    Article  CAS  Google Scholar 

  25. G. Liu, S.J. Zhang, W.H. Jiang, W.W. Cao, Losses in ferroelectric materials. Mater. Sci. Eng. R 89, 1–48 (2015). https://doi.org/10.1016/j.mser.2015.01.002

    Article  CAS  Google Scholar 

  26. N.N. Wu, Y.D. Hou, C. Wang, M.K. Zhu, X.M. Song, H. Yan, Effect of sintering temperature on dielectric relaxation and Raman scattering of 0.65Pb(Mg1/3Nb2/3)O3–0.35PbTiO3 system. J. Appl. Phys. 105, 084107 (2009). https://doi.org/10.1063/1.3106664

    Article  CAS  Google Scholar 

  27. C.A. Randall, N. Kim, J.P. Kucera, W.W. Cao, T.R. Shrout, Intrinsic and extrinsic size effects in fine-grained morphotropic-phase-boundary lead zirconate titanate ceramics. J. Am. Ceram. Soc. 81, 677–688 (1998). https://doi.org/10.1111/j.1151-2916.1998.tb02389.x

    Article  CAS  Google Scholar 

  28. R. German, P. Suri, S. Park, Review: liquid phase sintering. J. Mater. Sci. 44, 1–39 (2009). https://doi.org/10.1007/s10853-008-3008-0

    Article  CAS  Google Scholar 

  29. L. Jin, Z.B. He, D. Damjanovic, Nanodomains in Fe3+-doped lead zirconate titanate ceramics at the morphotropic phase boundary do not correlate with high properties. Appl. Phys. Lett. 95, 012905 (2009). https://doi.org/10.1063/1.3173198

    Article  CAS  Google Scholar 

  30. C.R. Qiu, B. Wang, N. Zhang, S.J. Zhang, J.F. Liu, D. Walker, Y. Wang, H. Tian, T.R. Shrout, Z. Xu, L.Q. Chen, F. Li, Transparent ferroelectric crystals with ultrahigh piezoelectricity. Nature 577, 350–354 (2020). https://doi.org/10.1038/s41586-019-1891-y

    Article  CAS  Google Scholar 

  31. B.D. Huey, R.N. Premnath, S. Lee, N.A. Polomoff, High speed SPM applied for direct nanoscale mapping of the influence of defects on ferroelectric switching dynamics. J. Am. Ceram. Soc. 95, 1147–1162 (2012). https://doi.org/10.1111/j.1551-2916.2012.05099.x

    Article  CAS  Google Scholar 

  32. K.Y. Zhao, J.T. Zeng, K.Q. Xu, H.R. Zeng, G.R. Li, Dynamic behaviors of ferroelectric domain structures in Eu-doped PMN-PT transparent ceramics studied by piezoresponse force microscopy. J. Mater. Sci.: Mater. Electron. 31, 15991–15995 (2020). https://doi.org/10.1007/s10854-020-04160-6

    Article  CAS  Google Scholar 

  33. D.M. Marincel, H.R. Zhang, A. Kumar, S. Jesse, S.V. Kalinin, W.M. Rainforth, I.M. Reaney, C.A. Randall, S. Trolier-McKinstry, Influence of a single grain boundary on domain wall motion in ferroelectrics. Adv. Funct. Mater. 24, 1409–1417 (2014). https://doi.org/10.1002/adfm.201302457

    Article  CAS  Google Scholar 

  34. P. Marton, T. Shimada, T. Kitamura, C. Elsasser, First-principles study of the interplay between grain boundaries and domain walls in ferroelectric PbTiO3. Phys. Rev. B 83, 064110 (2011). https://doi.org/10.1103/PhysRevB.83.064110

    Article  CAS  Google Scholar 

  35. B. Ma, Z. Hu, S. Liu, M. Narayanan, U. Balachandran, Temperature dependent polarization switching properties of ferroelectric Pb0.92La0.08Zr0.52Ti0.48O3 films grown on nickel foils. Appl. Phys. Lett. 102, 072901 (2013). https://doi.org/10.1063/1.4793304

    Article  CAS  Google Scholar 

  36. H. Jia, X.K. Hu, J.G. Chen, Temperature-dependent piezoelectric strain and resonance performance of Fe2O3-modified BiScO3-PbTiO3-Pb(Nb1/3Mn2/3)O3 ceramics. J. Eur. Ceram. Soc. 39, 2348–2353 (2019). https://doi.org/10.1016/j.jeurceramsoc.2019.02.013

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Key Research and Development Program of Sichuan Province (2021YFG0234), the Fundamental Research Funds for the Central Universities (20826041E4280), the National Natural Science Foundation of China (52032007), the research fund of National Major Science and Technology Projects of China (2019zx06002021), and the Applied Basic Research of Sichuan Province (2020YJ0317).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by TP. The PFM measurements were performed by HC. The first draft of the manuscript was written by TP and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Hong Liu.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pu, T., Chen, H., Xing, J. et al. High piezoelectricity of low-temperature sintered Li2CO3-added PNN–PZT relaxor ferroelectrics. J Mater Sci: Mater Electron 33, 4819–4830 (2022). https://doi.org/10.1007/s10854-021-07671-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-07671-y

Navigation