Skip to main content
Log in

Low temperature synthesis and enhanced electrical properties of PZN–PNN–PZT piezoelectric ceramics with the addition of Li2CO3

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The influence of Li+ doping on the structure and electrical properties of 10 mol% Sr2+-substituted 0.1Pb(Zn1/3Nb2/3)O3–0.1Pb(Ni1/3Nb2/3)O3–0.8Pb(Zr0.52Ti0.48)O3 (abbreviated as PZN–PNN–PZT) piezoelectric ceramics was studied. The Li+-doped PZN–PNN–PZT ceramics were successfully synthesized by the conventional solid-state reaction method at a low sintering temperature of 1100 °C, in contrast to 1300 °C required for their undoped counterpart. It is revealed that a phase transition occurs from rhombohedral to tetragonal with the addition of Li2CO3. All the as-prepared PZN–PNN–PZT ceramics present a uniform grain size distribution, while only the one with 0.1 wt% Li2CO3 added shows a high relative density of 98.4%. As a result, optimum comprehensive electrical properties are achieved in the 0.1 wt% Li2CO3-modified PZN–PNN–PZT ceramic: d 33 ~ 950 pC/N, k p ~ 0.69, ε r ~ 4700, P r ~ 33.5 µC/cm2, thus making it a promising candidate for high performance piezoelectric applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. A.S. Mischenko, Q. Zhang, J.F. Scott, R.W. Whatmore, N.D. Mathur, Science 311, 1270 (2006)

    Article  Google Scholar 

  2. M. Ahart, M. Somayazulu, R.E. Cohen, P. Ganesh, P. Dera, H.K. Mao, R.J. Hemley, Y. Ren, P. Liermann, Z. Wu, Nature 451, 545 (2008)

    Article  Google Scholar 

  3. N. Vittayakorn, C. Puchmark, G. Rujijanagul, X. Tan, D.P. Cann, Curr. Appl. Phys. 6, 303 (2006)

    Article  Google Scholar 

  4. R. Nie, Q. Zhang, Y. Yue, H. Liu, Y.B. Chen, Q. Chen, J.G. Zhu, P. Yu, D.Q. Xiao, J. Appl. Phys. 119, 124111 (2016)

    Article  Google Scholar 

  5. Y.X. Guo, W.B. Ma, F. Zhang, J. Mater. Sci. Mater. Electron. 27, 1520 (2016)

    Article  Google Scholar 

  6. G.G. Peng, C. Chen, J. Zhang, D.Y. Zheng, S.M. Hu, H. Zhang, J. Mater. Sci. Mater. Electron. 27, 3145 (2016)

    Article  Google Scholar 

  7. G.G. Peng, D.Y. Zheng, C. Cheng, J. Zhang, H. Zhang, J. Alloys Compd. 693, 1250 (2017)

    Article  Google Scholar 

  8. N. Vittayakorn, G. Rujijanaggul, T. Tunkasiri, X. Tan, D.P. Cann, J. Mater. Res. 18, 2882 (2003)

    Article  Google Scholar 

  9. Y. Zhang, X.H. Zhu, J.L. Zhu, X.M. Zeng, X.D. Feng, J.Z. Liao, Ceram. Int. 42, 4080 (2016)

    Article  Google Scholar 

  10. F. Gao, R.Z. Hong, J.J. Liu, Z. Li, C.S. Tian, Ceram. Int. 35, 1863 (2009)

    Article  Google Scholar 

  11. T. Hayashi, T. Hasegawa, J. Eur. Ceram. Soc. 25, 2437 (2005)

    Article  Google Scholar 

  12. C.H. Narm, H.Y. Park, I.T. Seo, J.H. Choi, S. Nahm, H.G. Lee, J. Alloys Compd. 509, 3686 (2011)

    Article  Google Scholar 

  13. S.H. Kang, C.W. Ahn, H.J. Lee, I.W. Kim, E.C. Park, J.S. Lee, J. Electroceram. 21, 855 (2008)

    Article  Google Scholar 

  14. H.D. Hou, L.M. Chang, M.K. Zhu, X.M. Song, H. Yan, J. Appl. Phys. 102, 084507 (2007)

    Article  Google Scholar 

  15. Y.D. Hou, M.K. Zhu, W. Hao, W. Bo, C.S. Tian, Y. Hui, J. Eur. Ceram. Soc. 24, 3731 (2004)

    Article  Google Scholar 

  16. J. Su, X. Lu, Y. Liu, G. Li, X. Ruan, F. Huang, J. Zhu, Appl. Phys. Lett. 100, 102905 (2012)

    Article  Google Scholar 

  17. J. Du, J. Qiu, K. Zhu, H. Ji, J. Electroceram. 32, 234 (2014)

    Article  Google Scholar 

  18. N. Vittayakorn, G. Rujijanagul, X. Tan, M.A. Marquardt, D.P. Cann, J. Appl. Phys. 96, 5103 (2004)

    Article  Google Scholar 

  19. K. Uchino, S. Nomura, Ferroelectrics, 44, 55 (1982)

    Article  Google Scholar 

  20. H.L. Li, Y. Zhang, J.J. Zhou, X.W. Zhang, H. Liu, J.Z. Fang, Ceram. Int. 41, 4822 (2015)

    Article  Google Scholar 

  21. M.P. Zheng, Y.D. Hou, M. Zhang, H. Yan, Mater. Res. Bull. 51, 426 (2014)

    Article  Google Scholar 

  22. M. Eriksson, H.X. Yan, G. Viola, H.P. Ning, D. Gruner, M. Nygren, J. Am. Ceram. Soc. 94, 3391 (2011)

    Article  Google Scholar 

  23. T. Rojac, M. Kosec, B. Budic, N. Setter, D. Damjanovic, J. Appl. Phys. 108, 074107 (2010)

    Article  Google Scholar 

  24. J.E. Garcia, R. Perez, D.A. Ochoa, A. Albareda, M.H. Lente, J.A. Eiras, J. Appl. Phys. 103, 054108 (2008)

    Article  Google Scholar 

  25. S. Zhang, R. Xia, T.R. Shrout, G. Zang, J. Wang, J. Appl. Phys. 100, 104108 (2006)

    Article  Google Scholar 

  26. T.R. Shrout, S. Zhang, J. Electroceram. 19, 111 (2007)

    Article  Google Scholar 

  27. S.J. Yoon, A. Joshi, K. Uchino, J. Am. Ceram. Soc. 80, 1035 (1997)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Chongqing Sipat Owncore Technology Co., Ltd. under Contract No. 16H0991 and the fund from the College of Materials Science & Engineering, Sichuan University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaohong Zhu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, K., Zhu, X., Zhang, Y. et al. Low temperature synthesis and enhanced electrical properties of PZN–PNN–PZT piezoelectric ceramics with the addition of Li2CO3 . J Mater Sci: Mater Electron 28, 15512–15518 (2017). https://doi.org/10.1007/s10854-017-7439-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-7439-8

Navigation