Skip to main content
Log in

PVA-coated miniaturized flexible fiber optic sensor for acetone detection: a prospective study for non-invasive diabetes diagnosis

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Diabetes is a complex metabolic disorder that leads to various health complications. Present conventional diagnostic methods of puncturing a finger cause pain, discomfort and measurement procedures often lead to irregular testing. Therefore, there is a need for a simple, painless, and portable technique, which can diagnose diabetes non-invasively and in real-time. Acetone vapor in human exhaled breath is a natural biomarker correlated with some metabolic diseases, like diabetes. Thus in this work, Fabry–Perot Interferometer-based polyvinyl alcohol-coated sensor platform for acetone vapor detection non-invasively at room temperature has been proposed and investigated for the prospective study of diabetic detection. The developed sensor platform of approx. 61 μm cavity length was employed for acetone sensing from 0 to 80 µL/L concentration. The evaluation parameters of the developed sensor like sensitivity, the limit of detection, response and recovery time for the acetone vapor detection at room temperature were observed in the order of 43.9 pm/(µL/L), 0.45 µL/L, 60 s and 10 s, respectively. The cross-sensitivity of the sensor was checked with methanol and ethanol. The experimentally observed sensitivity response (swelling) was found in agreement with the theoretically calculated miscibility values obtained from the Hansen solubility parameter model. The thermal stability of the developed sensor was also studied and found linear between the temperature ranges of 25–75 °C. The proposed sensor is simple, miniaturized, flexible, cost-effective, and highly sensitive for low acetone vapor concentration detection at room temperature. Therefore, this sensor maybe explore for diagnosis of diabetes non-invasively via acetone detection from the exhaled breath.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. C. Turner, C. Walton, S. Hoashi, M. Evans, J. Breath Res. 3, 046004 (2009)

    Article  Google Scholar 

  2. A. Thati, A. Biswas, S.R. Chowdhury, T.K. Sau, Int. J. Smart Sens. Intell. Syst. 8, 1244 (2015)

    CAS  Google Scholar 

  3. S. Wild, G. Roglic, A. Green, R. Sicree, H. King, Diabetes Care 27, 1047 (2004)

    Article  Google Scholar 

  4. International Diabetes Federation, IDF Report, 9th edn. (International Diabetes Federation, Brussels, 2019)

    Google Scholar 

  5. S. Das, S. Pal, M.J.J.M. Mitra, J. Med. Biol Eng. 36, 605 (2016)

    Article  Google Scholar 

  6. A. C.Vrančić, N. Fomichova, Gretz et al., Analyst 136, 1192 (2011)

    Article  Google Scholar 

  7. Z. Ren, G. Liu, Z. Huang, D. Zhao, Z. Xiong, Int. J. Optomechatron. 9, 221 (2015)

    Article  Google Scholar 

  8. C. Chou, C.-Y. Han, W.-C. Kuo, Y.-C. Huang, C.-M. Feng, J.-C. Shyu, Appl. Opt. 37, 3553 (1998)

    Article  CAS  Google Scholar 

  9. A.M.K. Enejder, T.G. Scecina, J. Oh et al., J. Biomed. Opt. 10, 031114 (2005)

    Article  Google Scholar 

  10. K. Maruo, M. Tsurugi, M. Tamura, Y. Ozaki, Appl. Spect. 57, 1236 (2003)

    Article  CAS  Google Scholar 

  11. R.J. McNichols, G.L. Coté, J. Biomed. Opt. 5, 5 (2000)

    Article  CAS  Google Scholar 

  12. W. March, D. Lazzaro, S. Rastogi, Diabetes Technol. Ther. 8, 312 (2006)

    Article  CAS  Google Scholar 

  13. J. Kottmann, J.M. Rey, M.W. Sigrist, Rev. Sci. Instrum. 82, 084903 (2011)

    Article  CAS  Google Scholar 

  14. J. Kottmann, J.M. Rey, J. Luginbühl, E. Reichmann, M.W. Sigrist, Biomed. Opt. Express 3, 667 (2012)

    Article  CAS  Google Scholar 

  15. C. Deng, J. Zhang, X. Yu, W. Zhang, X. Zhang, J. Chromatogr. B 810, 269 (2004)

    Article  CAS  Google Scholar 

  16. A. Fioravanti, S. Morandi, M.C. Carotta, Proc. Eng. 168, 485 (2016)

    Article  CAS  Google Scholar 

  17. K.-W. Kao, M.-C. Hsu, Y.-H. Chang, S. Gwo, J.A. Yeh, Sensors 12, 7157 (2012)

    Article  CAS  Google Scholar 

  18. H. Zhang, Y. Cen, Y. Du, S. Ruan, Sensors 16, 1876 (2016)

    Article  Google Scholar 

  19. W. Liu, L. Xu, K. Sheng et al., NPG Asia Mater. 10, 293 (2018)

    Article  CAS  Google Scholar 

  20. J.M. Sanchez, R.D. Sacks, Anal. Chem. 75, 2231 (2003)

    Article  CAS  Google Scholar 

  21. D. Tiwari, K. Mullaney, S. Korposh, S.W. James, S.-W. Lee, R.P. Tatam, Sens. Act. B 242, 645 (2017)

    Article  CAS  Google Scholar 

  22. P. Levinský, L. Kalvoda, J. Aubrecht, J. Fojtíková, Proc. SPIE 94500D, 6 (2005)

    Google Scholar 

  23. R. Kanawade, A. Kumar, D. Pawar et al., Opt. Express 27, 7277 (2019)

    Article  CAS  Google Scholar 

  24. R. Kanawade, A. Kumar, D. Pawar, D. Late, S. Mondal, R.K. Sinha, J. Opt. Soc. Am. B. 36, 684 (2019)

    Article  CAS  Google Scholar 

  25. D. Pawar, R. Kitture, S.N. Kale, Opt. Laser Technol. 89, 46 (2017)

    Article  CAS  Google Scholar 

  26. J.C. Echeverría, M. Faustini, J.J. Garrido, Sens. Act. B 222, 1166 (2016)

    Article  Google Scholar 

  27. M.J. Schnepf, M. Mayer, C. Kuttner et al., Nanoscale 9, 9376 (2017)

    Article  CAS  Google Scholar 

  28. C.-B. Yu, Y. Wu, C. Li et al., Opt. Mater. Express 7, 2111 (2017)

    Article  CAS  Google Scholar 

  29. G.Z. Xiao, A. Adnet, Z. Zhang, F.G. Sun, C.P. Grover, Sens. Act. A 118, 177 (2005)

    Article  CAS  Google Scholar 

  30. S. Kudo, E. Otsuka, A. Suzuki, J. Polym. Sci. 48, 1978 (2010)

    Article  CAS  Google Scholar 

  31. A. Kumar, D. Pawar, K. Vairagi, S. Mondal, R. Kanawade, Proc. Mater. Today 28, 1816 (2020)

    Article  CAS  Google Scholar 

  32. Y. Miao, B. Liu, H. Zhang et al., IEEE Photon.Technol. Lett. 21, 441 (2009)

    Article  CAS  Google Scholar 

  33. C. Zhao, Q. Yuan, L. Fang, X. Gan, J. Zhao, Opt. Lett. 41, 5515 (2016)

    Article  CAS  Google Scholar 

  34. Y. Shao, Y. Wang, S. Cao et al., Sensors 18, 2029 (2018)

    Article  Google Scholar 

  35. I.A. Furzer, Dev. Chem. Eng. Min. Process. 4, 245 (1996)

    Article  Google Scholar 

  36. S.M. Abernathy, K.R. Brown, Open Access Libr. J. 2, 7 (2015)

    Google Scholar 

  37. R.K. Sinnott, G. Towler, Chemical Engineering Design, 5th edn. (Butterworth-Heinemann, Oxford, 2009)

    Google Scholar 

  38. C. Rattanabut, W. Wongwiriyapan, W. Muangrat, W. Bunjongpru, M. Phonyiem, Y.J. Song, Jpn. J. Appl. Phys. 57, 04FP10 (2018)

    Article  Google Scholar 

  39. W. Cao, Y. Duan, Clin. Chem. 52, 800 (2006)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research work was supported by DST-SERB (under ASEAN-India Collaborative research scheme, Grant No. CRD-2018-000034).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ajay Kumar.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, A., Pawar, D., Late, D.J. et al. PVA-coated miniaturized flexible fiber optic sensor for acetone detection: a prospective study for non-invasive diabetes diagnosis. J Mater Sci: Mater Electron 33, 2509–2517 (2022). https://doi.org/10.1007/s10854-021-07458-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-07458-1

Navigation