Skip to main content
Log in

Rapid fabrication and thermoelectric properties of Sn1.03Te-based materials with porous configuration

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this work, porous Sn1.03Te-based samples with and without 1 vol% K2Ti6O13 whiskers were prepared by applying a one-step spark plasma sintering (SPS) process combined with a piecewise pressurization method. The underlying reaction of Sn and Te elements during the one-step SPS process was revealed. The manifestation of hierarchical structures, including nano-micro-pore configurations, nanoparticle assemblies, and nano-whiskers, was demonstrated during this process. These all-scale structures can scatter phonons collectively over a wide range of frequencies. In addition, a remarkable decline in lattice thermal conductivity of 34.1% was achieved for the Sn1.03Te sample containing 1 vol% K2Ti6O13 whiskers compared to the pristine Sn1.03Te sample at room temperature, which was prepared by melting quenching and SPS. A lower lattice thermal conductivity for Sn1.03Te-1 vol% K2Ti6O13 sample was obtained over a wide temperature range. The significantly decreased lattice thermal conductivity leads to a maximum figure of merit ZT value of 0.7 at 873 K. This approach for the rapid fabrication of porous structures can also be employed to develop various types of thermoelectric materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. J. He, T.M. Tritt, Advances in thermoelectric materials research: looking back and moving forward. Science 357, eaak9997 (2017)

    Article  Google Scholar 

  2. K. Biswas, J. He, I.D. Blum, C.I. Wu, T.P. Hogan, D.N. Seidman, V.P. Dravid, M.G. Kanatzidis, High-performance bulk thermoelectrics with all-scale hierarchical architectures. Nature 489, 414–418 (2012)

    Article  CAS  Google Scholar 

  3. J. He, M.G. Kanatzidis, V.P. Dravid, High performance bulk thermoelectrics via a panoscopic approach. Mater. Today 16, 166–176 (2013)

    Article  CAS  Google Scholar 

  4. H. Deng, X. Lou, W. Lu, J. Zhang, D. Li, S. Li, Q. Zhang, X. Zhang, X. Chen, D. Zhang, Y. Zhang, G. Tang, High-performance eco-friendly MnTe thermoelectrics through introducing SnTe nanocrystals and manipulating band structure. Nano Energy 81, 105649 (2021)

    Article  CAS  Google Scholar 

  5. M. Hong, Z.G. Chen, L. Yang, Y.C. Zou, M.S. Dargusch, H. Wang, J. Zou, Realizing ZT of 2.3 in Ge1-x-ySbxInyTe via reducing the phase-transition temperature and introducing resonant energy doping. Adv. Mater. 30, 1705942 (2018)

    Article  Google Scholar 

  6. Y. Sun, C.A. Di, W. Xu, D. Zhu, Advances in n-type organic thermoelectric materials and devices. Adv. Electron. Mater. 5, 1800825 (2019)

    Article  CAS  Google Scholar 

  7. D. Ju, J. Kim, H. Yook, J.W. Han, K. Cho, Engineering counter-ion-induced disorder of a highly doped conjugated polymer for high thermoelectric performance. Nano Energy 90, 106604 (2021)

    Article  CAS  Google Scholar 

  8. D. Li, Y. Gong, Y. Chen, J. Lin, Q. Khan, Y. Zhang, Y. Li, H. Zhang, H. Xie, Recent progress of two-dimensional thermoelectric materials. Nano-micro Lett. 12, 36 (2020)

    Article  Google Scholar 

  9. D. Qin, F. Pan, J. Zhou, Z. Xu, Y. Deng, High ZT and performance controllable thermoelectric devices based on electrically gated bismuth telluride thin films. Nano Energy 89, 106472 (2021)

    Article  CAS  Google Scholar 

  10. P. Fan, X.L. Huang, T.B. Chen, F. Li, Y.X. Chen, B. Jabar, S. Chen, H.L. Ma, G.X. Liang, J.T. Luo, X.H. Zhang, Z.H. Zheng, α-Cu2Se thermoelectric thin films prepared by copper sputtering into selenium precursor layers. Chem. Eng. J. 410, 128444 (2021)

    Article  CAS  Google Scholar 

  11. X. Shi, L. Chen, C. Uher, Recent advances in high-performance bulk thermoelectric materials. Int. Mater. Rev. 61, 379–415 (2016)

    Article  CAS  Google Scholar 

  12. G. Tan, L.D. Zhao, M.G. Kanatzidis, Rationally designing high-performance bulk thermoelectric materials. Chem. Rev. 116, 12123–12149 (2016)

    Article  CAS  Google Scholar 

  13. C. Chang, M. Wu, D. He, Y. Pei, C.F. Wu, X. Wu, H. Yu, F. Zhu, K. Wang, Y. Chen, L. Huang, J.F. Li, J. He, L.D. Zhao, 3D charge and 2D phonon transports leading to high out-of-plane ZT in n-type SnSe crystals. Science 360, 778–783 (2018)

    Article  CAS  Google Scholar 

  14. Y.K. Lee, Z. Luo, S.P. Cho, M.G. Kanatzidis, I. Chung, Surface oxide removal for polycrystalline SnSe reveals near-single-crystal thermoelectric performance. Joule 3, 719–731 (2019)

    Article  CAS  Google Scholar 

  15. G. Tan, F. Shi, S. Hao, L.D. Zhao, H. Chi, X. Zhang, C. Uher, C. Wolverton, V.P. Dravid, M.G. Kanatzidis, Non-equilibrium processing leads to record high thermoelectric figure of merit in PbTe-SrTe. Nat. Commun. 7, 12167 (2016)

    Article  CAS  Google Scholar 

  16. Y. Wu, Z. Chen, P. Nan, F. Xiong, S. Lin, X. Zhang, Y. Chen, L. Chen, B. Ge, Y. Pei, Lattice strain advances thermoelectrics. Joule 3, 1276–1288 (2019)

    Article  CAS  Google Scholar 

  17. R. Pathak, D. Sarkar, K. Biswas, Enhanced band convergence and ultra-low thermal conductivity lead to high thermoelectric performance. Angew. Chem. Int. Edit. 60, 2–9 (2021)

    Article  Google Scholar 

  18. Q. Zhang, X. Tan, Z. Guo, H. Wang, C. Xiong, N. Man, F. Shi, H. Hu, G.Q. Liu, J. Jiang, Improvement of thermoelectric properties of SnTe by Mn-Bi codoping. Chem. Eng. J. 421, 127795 (2021)

    Article  CAS  Google Scholar 

  19. A. Banik, S. Roychowdhury, K. Biswas, The journey of tin chalcogenides towards high-performance thermoelectrics and topological materials. Chem. Commun. 54, 6573–6590 (2018)

    Article  CAS  Google Scholar 

  20. L.M. Rogers, Valence band structure of SnTe. J. Phys. D: Appl. Phys. 1, 845–852 (1968)

    Article  Google Scholar 

  21. Z. Chen, X. Guo, F. Zhang, Q. Shi, M. Tang, R. Ang, Routes for advancing SnTe thermoelectrics. J. Mater. Chem. A 8, 16790–16813 (2020)

    Article  CAS  Google Scholar 

  22. A. Banik, U.S. Shenoy, S. Anand, U.V. Waghmare, K. Biswas, Mg alloying in SnTe facilitates valence band convergence and optimizes thermoelectric properties. Chem. Mater. 27, 581–587 (2015)

    Article  CAS  Google Scholar 

  23. G. Tan, W.G. Zeier, F. Shi, P. Wang, G.J. Snyder, V.P. Dravid, M.G. Kanatzidis, High thermoelectric performance SnTe–In2Te3 solid solutions enabled by resonant levels and strong vacancy phonon scattering. Chem. Mater. 27, 7801–7811 (2015)

    Article  CAS  Google Scholar 

  24. Q. Zhang, Z. Zhou, M. Dylla, M.T. Agne, Y. Pei, L. Wang, Y. Tang, J. Liao, J. Li, S. Bai, W. Jiang, L. Chen, G.J. Snyder, Realizing high-performance thermoelectric power generation through grain boundary engineering of skutterudite-based nanocomposites. Nano Energy 41, 501–510 (2017)

    Article  CAS  Google Scholar 

  25. Y.X. Chen, X.L. Shi, Z.H. Zheng, F. Li, W.D. Liu, W.Y. Chen, X.R. Li, G.X. Liang, J.T. Luo, P. Fan, Z.G. Chen, Two-dimensional WSe2/SnSe p-n junctions secure ultrahigh thermoelectric performance in n-type Pb/I Co-doped polycrystalline SnSe. Mater. Today Phys. 16, 100306 (2021)

    Article  CAS  Google Scholar 

  26. J. He, J. Xu, X. Tan, G.Q. Liu, H. Shao, Z. Liu, H. Jiang, J. Jiang, Synthesis of SnTe/AgSbSe2 nanocomposite as a promising lead-free thermoelectric material. J. Materiomics 2, 165–171 (2016)

    Article  Google Scholar 

  27. T. Wang, H. Wang, W. Su, J. Zhai, G. Yakovleva, X. Wang, T. Chen, A. Romanenko, C. Wang, Simultaneous enhancement of thermoelectric and mechanical performance for SnTe by nano SiC compositing. J. Mater. Chem. C 8, 7393–7400 (2020)

    Article  CAS  Google Scholar 

  28. P.E. Hopkins, P.T. Rakich, R.H. Olsson, I.F. El-kady, L.M. Phinney, Origin of reduction in phonon thermal conductivity of microporous solids. Appl. Phys. Lett. 95, 161902 (2009)

    Article  Google Scholar 

  29. M. Hong, Y. Wang, S. Xu, X. Shi, L. Chen, J. Zou, Z.G. Chen, Nanoscale pores plus precipitates rendering high-performance thermoelectric SnTe1-xSex with refined band structures. Nano Energy 60, 1–7 (2019)

    Article  CAS  Google Scholar 

  30. A.U. Khan, K. Kobayashi, D.M. Tang, Y. Yamauchi, K. Hasegawa, M. Mitome, Y. Xue, B. Jiang, K. Tsuchiya, D. Golberg, Y. Bando, T. Mori, Nano-micro-porous skutterudites with 100% enhancement in ZT for high performance thermoelectricity. Nano Energy 31, 152–159 (2017)

    Article  CAS  Google Scholar 

  31. H. Yang, P. Wen, X. Zhou, Y. Li, B. Duan, P. Zhai, Q. Zhang, Enhanced thermoelectric performance of Te-doped skutterudite with nano-micro-porous architecture. Scripta Mater. 159, 68–71 (2019)

    Article  CAS  Google Scholar 

  32. C.F. Wu, T.R. Wei, F.H. Sun, J.F. Li, Nanoporous PbSe-SiO2 thermoelectric composites. Adv. Sci. 4, 1700199 (2017)

    Article  Google Scholar 

  33. R. Liu, L. Gao, L. Li, X. Zha, J. Wang, G. Fu, S. Wang, Enhanced high-temperature thermoelectric performance of CdO ceramics with randomly distributed micropores. J. Am. Ceram. Soc. 100, 3239–3245 (2017)

    Article  CAS  Google Scholar 

  34. J. Yu, W.Y. Zhao, P. Wei, W.T. Zhu, H.Y. Zhou, Z.Y. Liu, D.G. Tang, B. Lei, Q.J. Zhang, Enhanced thermoelectric performance of (Ba,In) double-filled skutterudites via randomly arranged micropores. Appl. Phys. Lett. 104, 142104 (2014)

    Article  Google Scholar 

  35. L. Wang, M. Hong, Y. Kawami, Q. Sun, V.T. Nguyen, Y. Wang, L. Yue, S. Zheng, Z. Zhu, J. Zou, Z.G. Chen, Crowding-out effect strategy using AgCl for realizing a super low lattice thermal conductivity of SnTe. Sustain. Mater. Techno. 25, e00183 (2020)

    CAS  Google Scholar 

  36. S. Bresch, B. Mieller, D. Schoenauer-Kamin, R. Moos, F. Giovanelli, T. Rabe, Influence of pressure assisted sintering and reaction sintering on microstructure and thermoelectric properties of bi-doped and undoped calcium cobaltite. J. Appl. Phys. 126, 075102 (2019)

    Article  Google Scholar 

  37. D. Jin, Z. Ruan, B. Duan, J. Li, P. Zhai, H. Yang, H. Wang, G. Li, L. Zhou, Rapid preparation of high-performance S0.4Co4Sb11.2Te0.8 skutterudites with a highly porous structure. J. Eur. Ceram. Soc. 41, 4484–4489 (2021)

    Article  CAS  Google Scholar 

  38. J. Li, B. Duan, J. Li, Z. Ruan, T. Gao, Z. Fang, G. Li, P. Zhai, G. Chen, Substantial enhancement of mechanical properties for SnSe based composites with potassium titanate whiskers. J. Mater. Sci.-Mater. El. 30, 8502–8507 (2019)

    Article  CAS  Google Scholar 

  39. R. Blachnik, R. Igel, Thermodynamische eigenschaften von IV-VI-verbindungen: bleichalkogenide. Z. Naturforsch. B 29, 625–629 (1974)

    Article  CAS  Google Scholar 

  40. T. Liang, X. Su, X. Tan, G. Zheng, X. She, Y. Yan, X. Tang, C. Uher, Ultra-fast non-equilibrium synthesis and phase segregation in InxSn1–xTe thermoelectrics by SHS-PAS processing. J. Mater. Chem. C 3, 8550–8558 (2015)

    Article  CAS  Google Scholar 

  41. H. Wu, C. Chang, D. Feng, Y. Xiao, X. Zhang, Y. Pei, L. Zheng, D. Wu, S. Gong, Y. Chen, J. He, M.G. Kanatzidis, L.D. Zhao, Synergistically optimized electrical and thermal transport properties of SnTe via alloying high-solubility MnTe. Energ. Environ. Sci. 8, 3298–3312 (2015)

    Article  CAS  Google Scholar 

  42. W. Xu, H. Yang, C. Liu, Z. Zhang, C. Chen, Z. Ye, Z. Lu, X. Wang, J. Gao, J. Chen, Z. Xie, L. Miao, Optimized electronic bands and ultralow lattice thermal conductivity in Ag and Y codoped SnTe. ACS Appl. Mate. Inter. 13, 32876–32885 (2021)

    Article  CAS  Google Scholar 

  43. H.S. Kim, Z.M. Gibbs, Y. Tang, H. Wang, G.J. Snyder, Characterization of Lorenz number with Seebeck coefficient measurement. APL Mater. 3, 041506 (2015)

    Article  Google Scholar 

  44. G. Tan, F. Shi, S. Hao, H. Chi, T.P. Bailey, L. Zhao, C. Uher, C. Wolverton, V.P. Dravid, M.G. Kanatzidis, Valence band modification and high thermoelectric performance in SnTe heavily alloyed with MnTe. J. Am. Chem. Soc. 137, 11507–11516 (2015)

    Article  CAS  Google Scholar 

  45. F. Guo, B. Cui, Y. Liu, X. Meng, J. Cao, Y. Zhang, R. He, W. Liu, H. Wu, S.J. Pennycook, W. Cai, J. Sui, Thermoelectric SnTe with band convergence, dense dislocations, and interstitials through Sn self-compensation and Mn alloying. Small 14, 1802615 (2018)

    Article  Google Scholar 

  46. C.C. Zhang, X.A. Fan, J. Hu, C.P. Jiang, B. Feng, Q.S. Xiang, G.Q. Li, Y.W. Li, The effect of porosity and milling induced defects on the thermoelectric properties of p-type Bi2Te3-based bulks. Adv. Eng. Mater. 18, 1777–1784 (2016)

    Article  CAS  Google Scholar 

  47. A. Banik, K. Biswas, AgI alloying in SnTe boosts the thermoelectric performance via simultaneous valence band convergence and carrier concentration optimization. J. Solid State Chem. 242, 43–49 (2016)

    Article  CAS  Google Scholar 

  48. G. Xie, Z. Li, T. Luo, H. Bai, J. Sun, Y. Xiao, L.D. Zhao, J. Wu, G. Tan, X. Tang, Band inversion induced multiple electronic valleys for high thermoelectric performance of SnTe with strong lattice softening. Nano Energy 69, 104395 (2020)

    Article  CAS  Google Scholar 

  49. X. Dong, W. Cui, W.D. Liu, S. Zheng, L. Gao, L. Yue, Y. Wu, B. Wang, Z. Zhang, L. Chen, Z.G. Chen, Synergistic band convergence and defect engineering boost thermoelectric performance of SnTe. J. Mater. Sci. Technol. 86, 204–209 (2021)

    Article  Google Scholar 

  50. T. Hussain, X. Li, M.H. Danish, M.U. Rehman, J. Zhang, D. Li, G. Chen, G. Tang, Realizing high thermoelectric performance in eco-friendly SnTe via synergistic resonance levels, band convergence and endotaxial nanostructuring with Cu2Te. Nano Energy 73, 104832 (2020)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 51772231, 51972253, and 52022074), the Guiding Project of Hubei Provincial Department of Education (B2021330), and the Fundamental Research Funds for the Central Universities (WUT: 2020-YB-037, 2020IB001, and 2020IB013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo Duan.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, H., Duan, B., Zhou, L. et al. Rapid fabrication and thermoelectric properties of Sn1.03Te-based materials with porous configuration. J Mater Sci: Mater Electron 33, 2479–2489 (2022). https://doi.org/10.1007/s10854-021-07455-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-07455-4

Navigation