Skip to main content
Log in

Study of photocatalytic properties of clay intercalated semiconductor composite material of guanidinium tetrachloroferrate for oxidative degradation of model dye in sunlight

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Herein, different weight percentage ratios composites of montmorillonite-K10 clay (Mt) with semiconductor organic salt N,N-disulfo-1,1,3,3-tetramethylguanidinium tetrachloroferrate [DSTMG][FeCl4] were prepared as structurally modified compounds after intercalation of the organic salt using wet impregnation method. Structural modifications of the Mt framework were studied by various analytical techniques including infrared spectra, powder X-ray diffraction analysis, scanning electron microscope, energy dispersive X-ray, N2 adsorption–desorption isotherm, electronic spectra, acidity study and thermogravimetric analysis. Assessment of photocatalytic ability of the composites was studied from their intensity of photoluminescence spectra through recombination rate of photo excited electrons and holes. Their possible uses as heterogeneous photocatalyst were explored for oxidative degradation of model dye compound methyl orange using H2O2 (30%) and sunlight at room temperature in aqueous solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Scheme 2
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. S. Malamis, E. Katsou, A review on zinc and nickel adsorption on natural and modified zeolite, bentonite and vermiculite: examination of process parameters, kinetics and isotherms. J. Hazard. Mater. 252, 428–461 (2013)

    Article  Google Scholar 

  2. A. Vaccari, Preparation and catalytic properties of cationic and anionic clays. Catal. Today 41, 53–71 (1998)

    Article  CAS  Google Scholar 

  3. M.F. Butman, N.L. Ovchinnikov, N.S. Karasev, N.E. Kochkina, A.V. Agafonov, A.V. Vinogradov, Photocatalytic and adsorption properties of TiO2-pillared montmorillonite obtained by hydrothermally activated intercalation of titanium polyhydroxo complexes. Beilstein J. Nanotechnol. 9, 364–378 (2018)

    Article  CAS  Google Scholar 

  4. N. Bouazizi, D. Barrimo, S. Nousir, R.B. Slama, T.C. Shiao, R. Roy, A. Azzouz, Metal-loaded polyol-montmorillonite with improved affinity towards hydrogen. J. Energy Inst. 91, 110–119 (2018)

    Article  CAS  Google Scholar 

  5. N. Bouazizi, D. Barrimo, S. Nousir, R.B. Slama, R. Roy, A. Azzouz, Montmorillonite-supported Pd0, Fe0, Cu0 and Ag0 nanoparticles: properties and affinity towards CO2. Appl. Surf. Sci. 402, 314–322 (2017)

    Article  CAS  Google Scholar 

  6. K. Peng, H. Wang, H. Gao, P. Wan, M. Ma, X. Li, Emerging hierarchical ternary 2D nanocomposites constructed from montmorillonite, graphene and MoS2 for enhanced electrochemical hydrogen evolution. Chem. Eng. J. 393, 124704 (2020)

    Article  CAS  Google Scholar 

  7. K. Peng, H. Wang, X. Li, Xu.L. Wang, H. Gao, M. Niu, M. Ma, J. Yang, One-step hydrothermal growth of MoS2 nanosheets/CdS nanoparticles heterostructures on montmorillonite for enhanced visible light photocatalytic activity. Appl. Clay Sci. 175, 86–93 (2019)

    Article  CAS  Google Scholar 

  8. S. Maiti, A. Pramanik, S. Chattopadhyay, G. De, S. Mahanty, Electrochemical energy storage in montmorillonite K10 clay based composite as supercapacitor using ionic liquid electrolyte. J. Colloid Interface Sci. 464, 73–82 (2016)

    Article  CAS  Google Scholar 

  9. H. He, J. Guo, X. Xie, H. Lin, L. Li, A microstructural study of acid-activated montmorillonite from Choushan, China. Clay Miner. 37, 337–344 (2002)

    Article  CAS  Google Scholar 

  10. A. Jha, A.C. Garade, M. Shirai, C.V. Rode, Metal cation-exchanged montmorillonite clay as catalysts for hydroxyalkylation reaction. Appl. Clay Sci. 74, 141–146 (2013)

    Article  CAS  Google Scholar 

  11. A. Steudel, L.F. Batenburg, H.R. Fischer, P.G. Weidler, K. Emmerich, Alteration of swelling clay minerals by acid activation. Appl. Clay Sci. 44, 105–115 (2009)

    Article  CAS  Google Scholar 

  12. C.N. Rhodes, D.R. Brown, Autotransformation and ageing of acid-treated montmorillonite catalysts: a solid-state 27Al NMR study. J. Chem. Soc. Faraday Trans. 91, 1031–1035 (1995)

    Article  CAS  Google Scholar 

  13. F. Shirini, M. Seddighi, M. Mazloumi, M. Makhsous, M. Abedini, One-pot synthesis of 4,4′-(arylmethylene)-bis-(3-methyl-1-phenyl-1H-pyrazol-5-ols) catalyzed by Brönsted acidic ionic liquid supported on nanoporous Na+-montmorillonite. J. Mol. Liq. 208, 291–297 (2015)

    Article  CAS  Google Scholar 

  14. R. Ratti, S. Kaur, M. Vaultier, V. Singh, Preparation, characterization and catalytic activity of MMT-clay exchanged sulphonic acid functionalized ionic liquid for transesterification of β-ketoesters. Catal. Commun. 11, 503–507 (2010)

    Article  CAS  Google Scholar 

  15. F. Shirini, M. Mazloumi, M. Seddighi, Acidic ionic liquid immobilized on nanoporous Na+-montmorillonite as an efficient and reusable catalyst for the formylation of amines and alcohols. Res. Chem. Intermed. 42, 1759–1776 (2016)

    Article  CAS  Google Scholar 

  16. L. Wu, Q. Wang, N. Tang, L. Gao, Preparation of ionic liquids/montmorillonite composites and its application for diclofenac sodium removal. J. Contam. Hydrol. 220, 1–5 (2019)

    Article  CAS  Google Scholar 

  17. S. Sadri, B.B. Johnson, M. Ruyter-Hooley, M.J. Angove, The adsorption of nortriptyline on montmorillonite, kaolinite and gibbsite. Appl. Clay Sci. 165, 64–70 (2018)

    Article  CAS  Google Scholar 

  18. Z. Li, W.T. Jiang, P.H. Chang, G. Lv, S. Xu, Modification of a Ca-montmorillonite with ionic liquids and its application for chromate removal. J. Hazard. Mater. 270, 169–175 (2014)

    Article  CAS  Google Scholar 

  19. S.D. Lee, M.S. Park, D.W. Kim, I. Kim, D.W. Park, Catalytic performance of ion-exchanged montmorillonite with quaternary ammonium salts for the glycerolysis of urea. Catal. Today 232, 127–133 (2014)

    Article  CAS  Google Scholar 

  20. E. Zapp, D. Brondani, I.C. Vieira, C.W. Scheeren, J. Dupont, A.M. Barbosa, V.S. Ferreira, Biomonitoring of methomyl pesticide by laccase inhibition on sensor containing platinum nanoparticles in ionic liquid phase supported in montmorillonite. Sens. Actuators B 155, 331–339 (2011)

    Article  CAS  Google Scholar 

  21. M. Matzke, K. Thiele, A. Müller, J. Filser, Sorption and desorption of imidazolium based ionic liquids in different soil types. Chemosphere 74, 568–574 (2009)

    Article  CAS  Google Scholar 

  22. C. Takahashi, T. Shirai, M. Fuji, Selective intercalation of ionic liquid in montmorillonite and influence of water molecules. Solid State Ion. 267, 16–21 (2014)

    Article  CAS  Google Scholar 

  23. B.G. Soares, S.C. Ferreira, S. Livi, Modification of anionic and cationic clays by zwitterionic imidazolium ionic liquid and their effect on the epoxy-based nanocomposites. Appl. Clay Sci. 135, 347–354 (2017)

    Article  CAS  Google Scholar 

  24. A.S. Amarasekara, Acidic ionic liquids. Chem. Rev. 116, 6133–6183 (2016)

    Article  CAS  Google Scholar 

  25. J. Estager, J.D. Holbrey, M. Swadźba-Kwaśny, Halometallate ionic liquids revisited. Chem. Soc. Rev. 43, 847–886 (2014)

    Article  CAS  Google Scholar 

  26. H. Zhao, Current studies on some physical properties of ionic liquids. Phys. Chem. Liq. 41, 545–557 (2003)

    Article  CAS  Google Scholar 

  27. L. Wu, C. Yang, L. Mei, F. Qin, L. Liao, G. Lv, Microstructure of different chain length ionic liquids intercalated into montmorillonite: a molecular dynamics study. Appl. Clay Sci. 99, 266–274 (2014)

    Article  CAS  Google Scholar 

  28. Y. Ding, S. Wang, M. Zha, Z. Wang, Physicochemical adsorption and aggregative structures of the organic cation [C18mim]+ in the interlayer of montmorillonite. Acta Phys. Sin. 22, 548–551 (2006)

    Article  CAS  Google Scholar 

  29. M. Currie, J. Estager, P. Licence, S. Men, P. Nockemann, K.R. Seddon, M. Swadźba-Kwaśny, C. Terrade, Chlorostannate(II) ionic liquids: speciation, Lewis acidity, and oxidative stability. Inorg. Chem. 52, 1710–1721 (2013)

    Article  CAS  Google Scholar 

  30. Z. Cao, Y. Jia, Q. Wang, H. Cheng, High-efficiency photo-Fenton Fe/g-C3N4/kaolinite catalyst for tetracycline hydrochloride degradation. Appl. Clay Sci. 212, 106213 (2021)

    Article  CAS  Google Scholar 

  31. W. Lei, M. Xiaolei, H. Guofang, L. Rui, H. Jingwei, W. Qizhao, Construction of ternary CuO/CuFe2O4/g-C3N4 composite and its enhanced photocatalytic degradation of tetracycline hydrochloride with persulfate under simulated sunlight. J. Environ. Sci. 112, 59–70 (2022)

    Article  Google Scholar 

  32. X. Zhou, X. Cui, H. Chen, Y. Zhu, Y. Song, J. Shi, A facile synthesis of iron functionalized hierarchically porous ZSM-5 and its visible-light photocatalytic degradation of organic pollutants. Dalton Trans. 42, 890–893 (2013)

    Article  CAS  Google Scholar 

  33. A.K. Dutta, K. Boruah, R. Borah, Development of N,N-disulfo-1,1,3,3-tetramethylguanidinium chlorometallates as heterogeneous catalysts for one pot synthesis of 1,2-dihydro-1-aryl-3H-naphth[1,2-e][1,3]oxazin-3-one derivatives. Curr. Organocatal. 8, 172 (2021)

    Article  CAS  Google Scholar 

  34. M.T. Caccamo, G. Mavilia, L. Mavilia, D. Lombardo, S. Magazù, Self-assembly processes in hydrated montmorillonite by FTIR investigations. Materials 13, 1100 (2020)

    Article  CAS  Google Scholar 

  35. O. Alekseeva, A. Noskov, E. Grishina, L. Ramenskaya, N. Kudryakova, V. Ivanov, A. Agafonov, Structural and thermal properties of montmorillonite/ionic liquid composites. Materials 12, 2578 (2019)

    Article  CAS  Google Scholar 

  36. S. Ramesh, Y.S. Bhat, B.J. Prakash, Microwave-activated p-TSA dealuminated montmorillonite—a new material with improved catalytic activity. Clay Miner. 47, 231–242 (2012)

    Article  CAS  Google Scholar 

  37. V. Tabernero, C. Camejo, P. Terreros, M.D. Alba, T. Cuenca, Silicoaluminates as “support activator” systems in olefin polymerization processes. Materials 3, 1015–1030 (2010)

    Article  CAS  Google Scholar 

  38. R.A. Alvarez-Puebla, C. Aisa, J. Blasco, J.C. Echeverrıa, B. Mosquera, J.J. Garrido, Copper heterogeneous nucleation on a palygorskitic clay: an XRD, EXAFS and molecular modeling study. Appl. Clay Sci. 25, 103–110 (2004)

    Article  CAS  Google Scholar 

  39. J.G. Carriazo, M. Moreno-Forero, R.A. Molina, S. Moreno, Incorporation of titanium and titanium–iron species inside a smectite-type mineral for photocatalysis. Appl. Clay Sci. 50, 401–408 (2010)

    Article  CAS  Google Scholar 

  40. B.C. Lippens, B.G. Linsen, J.H. De Boe, Studies on pore systems in catalysis I. The adsorption of nitrogen; apparatus and calculation. J. Catal. 3, 32–37 (1964)

    Article  CAS  Google Scholar 

  41. E.P. Parry, An infrared study of pyridine adsorbed on acidic solids. Characterization of surface acidity. J. Catal. 2, 371–379 (1963)

    Article  CAS  Google Scholar 

  42. S. Devashankar, L. Mariappan, P. Sureshkumar, M. Rathnakumari, Growth and characterization of tetramethyl ammonium tetrachloro zincate II: a ferroic crystal. J. Cryst. Growth 311, 4207–4212 (2009)

    Article  CAS  Google Scholar 

  43. A. Kumar, M. Kumar, S.K. Verma, P.A. Alvi, D.S. Jasrotia, Single crystal growth, X-ray structure analysis, optical band gap, Raman spectra, strain tensor and photoluminscence properties in [HgCl4][R]+ and [ZnCl4][R]+ (R = 2-amino-5-chloropyridine) hybrid materials. J. Fundam. Appl. Sci. 7, 422–435 (2015)

    Article  CAS  Google Scholar 

  44. A.C. Pradhan, M.K. Sahoo, S. Bellamkonda, K.M. Parida, G.R. Rao, Enhanced photodegradation of dyes and mixed dyes by heterogeneous mesoporous Co–Fe/Al2O3–MCM-41 nanocomposites: nanoparticles formation, semiconductor behavior and mesoporosity. RSC Adv. 96, 94263–94277 (2016)

    Article  Google Scholar 

  45. R. Zha, R. Nadimicherla, X. Guo, Ultraviolet photocatalytic degradation of methyl orange by nanostructured TiO2/ZnO heterojunctions. J. Mater. Chem. A 12, 6565–6574 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Sophisticated Analytical Instrumentation Center, Tezpur University, for analyses of various samples.

Funding

Kabita Boruah awarded National Fellowship-OBC (Sanction No. 61-1/2018-199 (SA-III) & ID. No. NFO-2018-19-OBC-ASS-76509) by University Grant Commission, Government of India.

Author information

Authors and Affiliations

Authors

Contributions

RB: Conceptualization, methodology, formal analysis and investigation, writing-review and editing, supervision; KB: methodology, formal analysis and investigation, writing of original draft, funding acquisition; DBB: formal analysis and investigation; SS: formal analysis and investigation.

Corresponding author

Correspondence to Ruli Borah.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest, financial or others.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

10854_2021_7454_MOESM1_ESM.docx

Supplementary file1 (DOCX 1964 kb)—This file contains supporting data related to d values obtained from PXRD analysis, t-plots and Tauc plots of the Mt & [DSTMG][FeCl4]/Mt composites, dye degradation rate, recyclability study of 2c catalyst and FT-IR spectra of degradation product.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boruah, K., Bora, D.B., Saikia, S. et al. Study of photocatalytic properties of clay intercalated semiconductor composite material of guanidinium tetrachloroferrate for oxidative degradation of model dye in sunlight. J Mater Sci: Mater Electron 33, 2461–2478 (2022). https://doi.org/10.1007/s10854-021-07454-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-07454-5

Navigation