Skip to main content
Log in

Enhanced photoelectrochemical activity of electrochemically deposited ZnO nanorods for water splitting reaction

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

This paper reports the development of zinc oxide films electrodeposited at different potentials on tin-doped indium oxide substrates. The effect of deposition potential on ZnO microstructure, optical absorption, and photocatalytic activity for water splitting reaction were studied in detail. The films were potentiodynamically grown by applying different deposition potentials, such as − 0.7, − 0.8, and − 0.9 V at constant temperature (70 °C) for 30 min. The pH of precursor solution was maintained around 6 during the electrodeposition process. X-ray diffraction study revealed the hexagonal wurtzite crystal structure of the ZnO. The field emission scanning electron microscopy (FESEM) demonstrated a significant variation in the microstructure with changing deposition potential. UV–Visible spectroscopy demonstrated a significant change in the optical band gap values for the ZnO films deposited at different deposition potentials. The highest photocatalytic activity of water splitting was recorded for the films deposited at − 0.8 V under AM. 1.5 G solar light illumination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. J. Zhu, D. Yang, Z. Yin, Q. Yan, H. Zhang, Small 10, 3480 (2014). https://doi.org/10.1002/smll.201303202

    Article  Google Scholar 

  2. S. Liu, Z.R. Tang, Y. Sun, J.C. Colmenares, Y.J. Xu, Chem. Soc. Rev. 44, 5053 (2015). https://doi.org/10.1039/c4cs00408f

    Article  Google Scholar 

  3. M. Ball, M. Weeda, Int. J. Hydrog. Energy 40, 7903 (2015). https://doi.org/10.1016/j.ijhydene.2015.04.032

    Article  Google Scholar 

  4. H.B. Wu, B.Y. Xia, L. Yu, X.Y. Yu, X.W. Lou, Nat. Commun. 6, 6512 (2015). https://doi.org/10.1038/ncomms7512

    Article  Google Scholar 

  5. S. Chen, S.S. Thind, A. Chen, Electrochem. Commun. 63, 10 (2016). https://doi.org/10.1016/j.elecom.2015.12.003

    Article  Google Scholar 

  6. A. Eftekhari, V.J. Babu, S. Ramakrishna, Int. J. Hydrog. Energy (2017). https://doi.org/10.1016/j.ijhydene.2017.03.029

    Google Scholar 

  7. Y.K. Gaudy, S. Haussener, J. Mater. Chem. A 4, 3100 (2016). https://doi.org/10.1039/c5ta07328f

    Article  Google Scholar 

  8. W. Ren, H. Zhang, C. Cheng, Electrochim. Acta 241, 316 (2017). https://doi.org/10.1016/j.electacta.2017.04.145

    Article  Google Scholar 

  9. N. Iqbal, I. Khan, Z.H.A. Yamani, A. Qurashi, Sol. Energy 144, 604 (2017). https://doi.org/10.1016/j.solener.2017.01.057

    Article  Google Scholar 

  10. P. Varadhan, H.C. Fu, D. Priante et al., Nano Lett. 17, 1520 (2017). https://doi.org/10.1021/acs.nanolett.6b04559

    Article  Google Scholar 

  11. D. Cao, H. Xiao, J. Fang et al., Mater. Res. Express 4, 015019 (2017). https://doi.org/10.1088/2053-1591/aa56ee

    Article  Google Scholar 

  12. L. Yang, M. Zhang, K. Zhu, J. Lv, G. He, Z. Sun, Appl. Surf. Sci. (2016). https://doi.org/10.1016/j.apsusc.2016.07.001

    Google Scholar 

  13. S. Banerjee, S.K. Mohapatra, M. Misra, J. Phys. Chem. C 115, 12643 (2011). https://doi.org/10.1021/jp106879p

    Article  Google Scholar 

  14. N.D. Desai, S.S. Mali, R.M. Mane, V.B. Ghanwat, C.K. Hong, P.N. Bhosale, J. Mater. Sci.: Mater. Electron. 27, 11739 (2016). https://doi.org/10.1007/s10854-016-5312-9

    Google Scholar 

  15. Z. Liu, Q. Cai, C. Ma, J. Zhang, J. Liu, New J. Chem. (2017). https://doi.org/10.1039/c7nj01725a

    Google Scholar 

  16. P.R. Deshmukh, Y. Sohn, W.G. Shin, J. Alloys Compd. (2017). https://doi.org/10.1016/j.jallcom.2017.04.030

    Google Scholar 

  17. M.S. Islam, M.F. Hossain, S.M.A. Razzak, J. Photochem. Photobiol. A 326, 100 (2016). https://doi.org/10.1016/j.jphotochem.2016.04.002

    Article  Google Scholar 

  18. T.D. Dongale, K.V. Khot, S.S. Mali et al., Mater. Sci. Semicond. Process. 40, 523 (2015). https://doi.org/10.1016/j.mssp.2015.07.004

    Article  Google Scholar 

  19. K.V. Khot, S.S. Mali, R.M. Mane et al., J. Mater. Sci.: Mater. Electron. 26, 6897 (2015). https://doi.org/10.1007/s10854-015-3307-6

    Google Scholar 

  20. A. Mahmood, A. Naeem, InTech (2017). https://doi.org/10.5772/67857

    Google Scholar 

  21. F. Li, L. Yang, G. Xu et al., J. Alloys Compd. 577, 663 (2013). https://doi.org/10.1016/j.jallcom.2013.06.147

    Article  Google Scholar 

  22. S. Agnihotri, G. Bajaj, S. Mukherji, S. Mukherji, Nanoscale 7, 7415 (2015). https://doi.org/10.1039/c4nr06913g

    Article  Google Scholar 

  23. J. Jean, S. Chang, P.R. Brown et al., Adv. Mater. 25, 2790 (2013). https://doi.org/10.1002/adma.201204192

    Article  Google Scholar 

  24. S.H. Chen, C.F. Yu, C.S. Chien, (2017) Microsc Res Tech. https://doi.org/10.1002/jemt.22848

    Google Scholar 

  25. S.K. Shaikh, S.I. Inamdar, V.V. Ganbavle, K.Y. Rajpure, J. Alloys Compd. 664, 242 (2016). https://doi.org/10.1016/j.jallcom.2015.12.226

    Article  Google Scholar 

  26. V.K. Kaushik, C. Mukherjee, T. Ganguli, P.K. Sen, J. Alloys Compd. 689, 1028 (2016). https://doi.org/10.1016/j.jallcom.2016.08.022

    Article  Google Scholar 

  27. R. Rayathulhan, B.K. Sodipo, AA Aziz, Ultrason. Sonochem. 35, 270 (2017). https://doi.org/10.1016/j.ultsonch.2016.10.002

    Article  Google Scholar 

  28. G. Zhu, Y. Shen, K. Xu et al., J. Alloys Compd. 689, 192 (2016). https://doi.org/10.1016/j.jallcom.2016.07.182

    Article  Google Scholar 

  29. S. Sampath, M. Shestakova, P. Maydannik et al., RSC Adv. 6, 25173 (2016). https://doi.org/10.1039/c6ra01655c

    Article  Google Scholar 

  30. J. Laube, D. Nübling, H. Beh, S. Gutsch, D. Hiller, M. Zacharias, Thin Solid Films 603, 377 (2016). https://doi.org/10.1016/j.tsf.2016.02.060

    Article  Google Scholar 

  31. K.G. Girija, K. Somasundaram, A. Topkar, R.K. Vatsa, J. Alloys Compd. 684, 15 (2016). https://doi.org/10.1016/j.jallcom.2016.05.125

    Article  Google Scholar 

  32. N. Kıcır, T. Tüken, O. Erken, C. Gumus, Y. Ufuktepe, Appl. Surf. Sci. 377, 191 (2016). https://doi.org/10.1016/j.apsusc.2016.03.111

    Article  Google Scholar 

  33. W. Riedel, Y. Tang, W. Ohm, J. Chen, M.C. Lux-Steiner, S. Gledhill, Thin Solid Films 574, 177 (2015). https://doi.org/10.1016/j.tsf.2014.12.006

    Article  Google Scholar 

  34. J.K. Liang, H.L. Su, C.L. Kuo et al., Electrochim. Acta 125, 124 (2014). https://doi.org/10.1016/j.electacta.2014.01.029

    Article  Google Scholar 

  35. F. Xu, Y. Lu, Y. Xie, Y. Liu, Mater. Des. 30, 1704 (2009). https://doi.org/10.1016/j.matdes.2008.07.024

    Article  Google Scholar 

  36. L. Xu, Y. Guo, Q. Liao, J. Zhang, D. Xu, J. Phys. Chem. B 109, 13519 (2005)

    Article  Google Scholar 

  37. R. Tena-Zaera, J. Elias, G. Wang, C. Lévy-Clément, J. Phys. Chem. C 111, 16706 (2007)

    Article  Google Scholar 

  38. L. Vayssieres, K. Keis, S.E. Lindquist, A. Hagfeldt, J. Phys. Chem. B 105, 3350 (2001). https://doi.org/10.1021/jp010026s

    Article  Google Scholar 

  39. A. Mahmood, F. Tezcan, G. Kardaş, Int. J. Hydrog. Energy (2017). https://doi.org/10.1016/j.ijhydene.2017.06.003

    Google Scholar 

  40. H. Li, Y. Fu, H. Liu et al., Inorg. Chem. Commun. 30, 182 (2013). https://doi.org/10.1016/j.inoche.2012.11.029

    Article  Google Scholar 

  41. P. Paufler, Cryst. Res. Technol. 16, 982 (1981)

    Google Scholar 

  42. F. Xu, Y. Lu, Y. Xie, Y. Liu, J. Solid State Electrochem. 14, 63 (2009). https://doi.org/10.1007/s10008-009-0785-6

    Article  Google Scholar 

  43. V. Kumar, N. Singh, R.M. Mehra, A. Kapoor, L.P. Purohit, H.C. Swart, Thin Solid Films 539, 161 (2013). https://doi.org/10.1016/j.tsf.2013.05.088

    Article  Google Scholar 

  44. S. Xie, X. Lu, T. Zhai et al., J. Mater. Chem. 22, 14272 (2012)

    Article  Google Scholar 

  45. Z. Han, L. Liao, Y. Wu, H. Pan, S. Shen, J. Chen, J. Hazard. Mater. 217, 100 (2012)

    Article  Google Scholar 

  46. Y. Zheng, C. Chen, Y. Zhan et al., Inorg. Chem. 46, 6675 (2007)

    Article  Google Scholar 

  47. A.B. Djurišić, Y.H. Leung, Small 2: 944 (2006)

    Article  Google Scholar 

  48. P.C. Patel, S. Ghosh, P.C. Srivastava, Mater. Res. Bull. 81, 85 (2016). https://doi.org/10.1016/j.materresbull.2016.05.005

    Article  Google Scholar 

  49. Y.F. Gao, M. Nagai, Y. Masuda, F. Sato, K. Koumoto, J. Cryst. Growth 286, 445 (2006). https://doi.org/10.1016/j.jcrysgro.2005.10.072

    Article  Google Scholar 

  50. S. Srinivasan, Fuel Cells From Fundamentals To Applications (Springer, New York, 2006)

    Google Scholar 

  51. H. Gerischer, Solar Energy Conversion (Springer, Berlin, 1979), p. 115

    Book  Google Scholar 

  52. M. Radecka, M. Rekas, A. Trenczek-Zajac, K. Zakrzewska, J. Power Sources 181, 46 (2008). https://doi.org/10.1016/j.jpowsour.2007.10.082

    Article  Google Scholar 

  53. K. Gelderman, L. Lee, S.W. Donne, J. Chem. Educ. 84, 685 (2007)

    Article  Google Scholar 

  54. K.S. Ahn, S. Shet, T. Deutsch et al., J. Power Sources 176, 387 (2008). https://doi.org/10.1016/j.jpowsour.2007.10.034

    Article  Google Scholar 

  55. V. Ischenko, S. Polarz, D. Grote, V. Stavarache, K. Fink, M. Driess, Adv. Funct. Mater. 15, 1945 (2005)

    Article  Google Scholar 

  56. Z. Chen, T.F. Jaramillo, T.G. Deutsch et al., J. Mater. Res. 25, 3 (2011). https://doi.org/10.1557/jmr.2010.0020

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support of the Scientific and Technological Research Council of Turkey under (TUBITAK- BİDEB) 2211- National Ph.D. Fellowship Programme and Scientific Research Project of Cukurova University (Project No: FDK-2014-3488).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Asad Mahmood or Gulfeza Kardaş.

Additional information

Dr. Gülfeza Kardaş is the first/primary corresponding author of the article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tezcan, F., Mahmood, A. & Kardaş, G. Enhanced photoelectrochemical activity of electrochemically deposited ZnO nanorods for water splitting reaction. J Mater Sci: Mater Electron 29, 9547–9554 (2018). https://doi.org/10.1007/s10854-018-8989-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-8989-0

Navigation