Skip to main content
Log in

Impact of interfacial charges on analog and RF performance of Mg2Si source heterojunction double-gate tunnel field effect transistor

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Tunnel field effect transistors (TFETs) have proved themselves as a better choice for the replacement of MOSFET due to provision of scalability and possibility of better realization of goal to achieve subthreshold swing less than 60 mV/decade. Challenge of lower ON current in conventional TFET has been overcome by a heterojunction double-gate (DG) TFET structure in which a low bandgap material, magnesium silicide (Mg2Si) is implemented as source region. There is dire need to determine the reliability of such device under various constraints to optimize them for low-power and high-speed applications. Therefore, in this paper, authors examine the device reliability by investigating the analog/RF performance of Mg2Si source heterojunction double-gate TFET (MSH-DG-TFET) under the influence of interface trap charge polarity and density. This reliability analysis is accomplished by including the effect of trap charges (both positive interface charges, i.e., donors and negative interface charges, i.e., acceptors) at Si/SiO2 interface. Presence of these trapped acceptor and donor charges at Si/SiO2 interface modifies the flat-band voltage which in turn alters the performance of the device. It is revealed that for positive trap charge density of 1 × 1012 cm−2, the leakage current or off-state current of MSH-DG-TFET drastically increases from an order of 10–18 to 10–14 A/µm, thus degrading the performance. Further, presence of negative trap charges at interface tends to enhance the flat-band voltage that translates to the higher gate bias to turn the device ON. Results reveal that impact of positive interface charges is more pernicious on the device performance as compared to the negative interface charges. Thus, MSH-DG-TFET is susceptible to the donor traps existing at Si/SiO2 in comparison with the acceptor traps. Studies carried out may prove to be very useful for future research work in suggesting better TFET structures comprising of Mg2Si as source.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References:

  1. W.F. Brinkman, D.E. Haggan, W.W. Troutman, A history of the invention of the transistor and where it will lead us. IEEE J. Solid-State Circuits 32(12), 1858–1865 (1997). https://doi.org/10.1109/4.643644

    Article  Google Scholar 

  2. A. Chaudhry, M.J. Kumar, Controlling short-channel effects in deep-submicron SOI MOSFETs for improved reliability: a review. IEEE Trans. Device Mater. Reliab. 4(1), 99–109 (2004). https://doi.org/10.1109/TDMR.2004.824359

    Article  Google Scholar 

  3. G. Baccarani, M.R. Wordeman, R.H. Dennard, Generalized scaling theory and its application to a ¼ micrometer MOSFET design. IEEE Trans. Electron Devices 31(4), 452–462 (1984). https://doi.org/10.1109/T-ED.1984.21550

    Article  Google Scholar 

  4. J. Appenzeller, Y.M. Lin, J. Knoch, P. Avouris, Band-to-band tunneling in carbon nanotube field-effect transistors. Phys. Rev. Lett. 93(19), 196805 (2004). https://doi.org/10.1103/PhysRevLett.93.196805

    Article  CAS  Google Scholar 

  5. A.M. Ionescu, H. Riel, Tunnel field-effect transistors as energy-efficient electronic switches. Nature 479(7373), 329–337 (2011). https://doi.org/10.1038/nature10679

    Article  CAS  Google Scholar 

  6. K. Boucart, A.M. Ionescu, Double-gate tunnel FET with high-k gate dielectric. IEEE Trans. Electron Devices 54(7), 1725–1733 (2007). https://doi.org/10.1109/TED.2007.899389

    Article  CAS  Google Scholar 

  7. B.V. Chandan, S. Dasari, K. Nigam, S. Yadav, S. Pandey, D. Sharma, Impact of gate material engineering on ED-TFET for improving DC/analogue-RF/linearity performances. Micro Nano Lett. 13(12), 1653–1656 (2018). https://doi.org/10.1049/mnl.2018.5131

    Article  CAS  Google Scholar 

  8. S. Chander, B. Bhowmick, S. Baishya, Heterojunction fully depleted SOI-TFET with oxide/source overlap. Superlattices Microstruct. 86, 43–50 (2015). https://doi.org/10.1016/j.spmi.2015.07.030

    Article  CAS  Google Scholar 

  9. S.S. Chauhan, A new design approach to improve DC, analog/RF and linearity metrics of Vertical TFET for RFIC design. Superlattices Microstruct. 122, 286–295 (2018). https://doi.org/10.1016/j.spmi.2018.07.036

    Article  CAS  Google Scholar 

  10. J. Madan, S.S. Bisht, R. Chaujar, Heterojunction DG-TFET-Analysis of Different Source Material for Improved Intermodulation, IEEE 2nd International Conference on Trends in Electronics and Informatics (ICOEI), pp. 1080–1084, (2018). https://doi.org/10.1109/ICOEI.2018.8553856

  11. B.R. Raad, S. Tirkey, D. Sharma, P. Kondekar, A new design approach of dopingless tunnel FET for enhancement of device characteristics. IEEE Trans. Electron Devices 64(4), 1830–1836 (2017). https://doi.org/10.1109/TED.2017.2672640

    Article  CAS  Google Scholar 

  12. S. Shekhar, J. Madan, R. Chaujar, Source/gate material-engineered double gate TFET for improved RF and linearity performance: a numerical simulation. Appl. Phys. A 124(11), 739 (2018). https://doi.org/10.1007/s00339-018-2158-4

    Article  CAS  Google Scholar 

  13. G. Kim, J. Lee, J.H. Kim, S.J.M. Kim, High on-current Ge-channel heterojunction tunnel field-effect transistor using direct band-to-band tunneling. Micromachines 10(2), 77 (2019). https://doi.org/10.3390/mi10020077

    Article  Google Scholar 

  14. H.B. Joseph, S.K. Singh, R. Hariharan, P.A. Priya, N.M. Kumar, D.J. Thiruvadigal, Hetero structure PNPN tunnel FET: analysis of scaling effects on counter doping. Appl. Surf. Sci. 449, 823–828 (2018). https://doi.org/10.1016/j.apsusc.2018.01.274

    Article  CAS  Google Scholar 

  15. Z. Ahangari, Design and analysis of energy efficient semi-junctionless n+ n+ p heterojunction p-channel tunnel field effect transistor. J. Mater. Res. Express 6(6), 065901 (2019)

    Article  CAS  Google Scholar 

  16. Y. Wu, H. Hasegawa, K. Kakushima, K. Ohmori, H. Wakabayashi, K. Tsutsui, A. Nishiyama, N. Sugii, Y. Kataoka, K. Natori, K. Yamada, Influence of Band Discontinuities at Source-Channel contact in Tunnel FET Performance, In Proceedings of 2013 International Workshop on Dielectric Thin Films, Tokyo, (2000). Corpus ID: 56228132. http://www.iwailab.ep.titech.ac.jp/pdf/201311iwdtf/wu.pdf

  17. Y. Wu, H. Hasegawa, K. Kakushima, K. Ohmori, T. Watanabe, A. Nishiyama, N. Sugii, H. Wakabayashi, K. Tsutsui, Y. Kataoka, K. Natori, A novel hetero-junction tunnel-FET using semiconducting silicide–silicon contact and its scalability. Microelectron. Reliab. 54(5), 899–904 (2014). https://doi.org/10.1016/j.microrel.2014.01.023

    Article  CAS  Google Scholar 

  18. M. Elnaggar, A. Shaker, M. Fedawy, A comprehensive investigation of TFETs with semiconducting silicide source: impact of gate drain underlap and interface traps. Semicond. Sci. Technol. 34(4), 045015 (2019). https://doi.org/10.1088/1361-6641/ab0922

    Article  CAS  Google Scholar 

  19. J. Madan, M. Dassi, R. Pandey, R. Chaujar, R. Sharma, Numerical analysis of Mg2Si/Si heterojunction DG-TFET for low power/high performance applications: impact of non-idealities. Superlattices Microstruct. 139, 106397 (2020). https://doi.org/10.1016/j.spmi.2020.106397

    Article  CAS  Google Scholar 

  20. M. Dassi, J. Madan, R. Pandey, R. Sharma, A novel source material-engineered DG-TFET structure for RFIC applications. Semicond. Sci. Technol. 35(10), 105013 (2020). https://doi.org/10.1088/1361-6641/abaa5b

    Article  CAS  Google Scholar 

  21. M. Dassi, J. Madan, R. Pandey, R. Sharma, Effect of temperature on analog performance of Mg2Si source heterojunction double gate tunnel field effect transistor. Mater. Today: Proc. (2020). https://doi.org/10.1016/j.matpr.2020.04.834

    Article  Google Scholar 

  22. K. Ganapathi, Y. Yoon, S. Salahuddin, Analysis of InAs vertical and lateral band-to-band tunneling transistors: leveraging vertical tunneling for improved performance. Appl. Phys. Lett. 97(3), 033504 (2010). https://doi.org/10.1063/1.3466908

    Article  CAS  Google Scholar 

  23. R. Jhaveri, V. Nagavarapu, J.C. Woo, Effect of pocket doping and annealing schemes on the source-pocket tunnel field-effect transistor. IEEE Trans. Electron Devices 58(1), 80–86 (2010). https://doi.org/10.1109/TED.2010.2089525

    Article  CAS  Google Scholar 

  24. J. Madan, R. Chaujar, Interfacial charge analysis of heterogeneous gate dielectric-gate all around-tunnel FET for improved device reliability. IEEE Trans. Device Mater. Reliab. 16(2), 227–234 (2016). https://doi.org/10.1109/TDMR.2016.2564448

    Article  CAS  Google Scholar 

  25. U.E. Avci, B.C. Kung, A. Agrawal, G. Dewey, V. Le, R. Rios, D.H. Morris, Study of TFET non-ideality effects for determination of geometry and defect density requirements for sub-60mV/dec Ge TFET, In 2015 IEEE International Electron Devices Meeting (IEDM), pp. 34–5, 2015. https://doi.org/10.1109/IEDM.2015.7409 828

  26. A.S. Verhulst, D. Verreck, Q. Smets, K.H. Kao, M. Van de Put, R. Rooyackers, B. Soree, A. Vandooren, K. De Meyer, G. Groeseneken, and M. M. Heyns, Perspective of tunnel-FET for future low-power technology nodes, IEEE International Electron Devices Meeting, pp. 30–2. 4, 2014. https://doi.org/10.1109/IEDM. 2014.7047140

  27. J. Madan, R. Pandey, R. Sharma, R. Chaujar, Investigation of electrical/analog performance and reliability of gate metal and source pocket engineered DG-TFET. Microsyst. Technol. (2020). https://doi.org/10.1007/s00542-020-04845-2

    Article  Google Scholar 

  28. E. Duval, E. Lheurette, Characterisation of charge trapping at the Si–SiO2 (100) interface using high-temperature conductance spectroscopy. Microelectron. Eng. 65(1–2), 103–112 (2003). https://doi.org/10.1016/S0167-9317(02)00732-3

    Article  Google Scholar 

  29. W. Cao, C. Yao, G. Jiao, D. Huang, H. Yu, M.F. Li, Improvement in reliability of tunneling field-effect transistor with pnin structure. IEEE Trans. Electron Devices 58(7), 2122–2126 (2011). https://doi.org/10.1109/TED.2011.2144987

    Article  CAS  Google Scholar 

  30. X.Y. Huang, G.F. Jiao, W. Cao, D. Huang, H.Y. Yu, Z.X. Chen, N. Singh, G.Q. Lo, D.L. Kwong, M.-F. Li, Effect of interface traps and oxide charge on drain current degradation in tunneling field-effect transistors. IEEE Electron Device Lett. 31(8), 779–781 (2010). https://doi.org/10.1109/LED.2010.2050456

    Article  CAS  Google Scholar 

  31. G.F. Jiao, X.Y. Huang, Z.X. Chen, W. Cao, D. Huang, H.Y. Yu, N. Singh, G.Q. Lo, D.L. Kwong, M.-F. Li, Investigation of tunneling field effect transistor reliability, 10th IEEE International Conference on Solid-State and Integrated Circuit Technology, pp. 1612–1615, (2010). https://doi.org/10.1109/ICSICT.2010.5667426

  32. G.B. Beneventi, E. Gnani, A. Gnudi, S. Reggiani, G. Baccarani, Can interface traps suppress TFET ambipolarity? IEEE Electron Device Lett. 34(12), 1557–1559 (2013). https://doi.org/10.1109/LED.2013.2284290

    Article  CAS  Google Scholar 

  33. Y. Qiu, R. Wang, Q. Huang, R. Huang, A comparative study on the impacts of interface traps on tunneling FET and MOSFET. IEEE Trans. Electron Devices 61(5), 1284–1291 (2014). https://doi.org/10.1109/TED.2014.2312330

    Article  CAS  Google Scholar 

  34. K.E. Moselund, D. Cutaia, H. Schmid, M. Borg, S. Sant, A. Schenk, H. Riel, Lateral InAs/Si p-type tunnel FETs integrated on Si—part 1: experimental devices. IEEE Trans. Electron Devices 63(11), 4233–4239 (2016). https://doi.org/10.1109/TED.2016.2606762

    Article  CAS  Google Scholar 

  35. S. Sant, K. Moselund, D. Cutaia, H. Schmid, M. Borg, H. Riel, A. Schenk, Lateral InAs/Si p-type tunnel FETs integrated on Si—part 2: simulation study of the impact of interface traps. IEEE Trans. Electron Devices 63(11), 4240–4247 (2016). https://doi.org/10.1109/TED.2016.2612484

    Article  CAS  Google Scholar 

  36. J. Madan, R. Chaujar, Numerical simulation of N+ source pocket PIN-GAA-tunnel FET: impact of interface trap charges and temperature. IEEE Trans. Electron Devices 64(4), 1482–1488 (2017). https://doi.org/10.1109/TED.2017.2670603

    Article  Google Scholar 

  37. P. Venkatesh, K. Nigam, S. Pandey, D. Sharma, P. Kondekar, Impact of interface trap charges on performance of electrically doped tunnel FET with heterogeneous gate dielectric. IEEE Trans. Device Mater. Reliab. 17(1), 245–252 (2017). https://doi.org/10.1109/TDMR.2017.2653620

    Article  CAS  Google Scholar 

  38. A.M. Walke, A.S. Verhulst, A. Vandooren, D. Verreck, E. Simoen, V.R. Rao, G. Groeseneken, N. Collaert, A.V.Y. Thean, Part I: impact of field-induced quantum confinement on the subthreshold swing behavior of line TFETs. IEEE Trans. Electron Devices 60(12), 4057–4064 (2013). https://doi.org/10.1109/TED.2013.2287259

    Article  CAS  Google Scholar 

  39. A.M. Walke, A. Vandooren, B. Kaczer, A.S. Verhulst, R. Rooyackers, E. Simoen, M.M. Heyns, V.R. Rao, G. Groeseneken, N. Collaert, A.V.Y. Thean, Part II: investigation of subthreshold swing in line tunnel FETs using bias stress measurements. IEEE Trans. Electron Devices 60(12), 4065–4072 (2013). https://doi.org/10.1109/TED.2013.2287253

    Article  CAS  Google Scholar 

  40. P. Ghosh, A. Roy, B. Bhowmick, The impact of donor/acceptor types of interface traps on selective buried oxide TFET characteristics. Appl. Phys. A 126(5), 1–7 (2020). https://doi.org/10.1007/s00339-020-03505-6

    Article  CAS  Google Scholar 

  41. K. Baruah, R. Das, S. Baishya, Impact of trap charge and temperature on DC and Analog/RF performances of hetero structure overlapped PNPN tunnel FET. Appl. Phys. A 126(11), 1–12 (2020). https://doi.org/10.1007/s00339-020-04054-8

    Article  CAS  Google Scholar 

  42. J. Franco, A. Alian, A. Vandooren, A.S. Verhulst, D. Linten, N. Collaert, A. Thean, Intrinsic robustness of TFET subthreshold swing to interface and oxide traps: a comparative PBTI study of InGaAs TFETs and MOSFETs. IEEE Electron Device Lett. 37(8), 1055–1058 (2016). https://doi.org/10.1109/LED.2016.2584983

    Article  Google Scholar 

  43. M. Akasaka, T. Lida, A. Matsumoto, K. Yamanaka, Y. Takanashi, T. Imai, N. Hamada, The thermoelectric properties of bulk crystalline n-and p-type Mg2Si prepared by the vertical Bridgman method. Appl. Phys. 104(1), 013703 (2008). https://doi.org/10.1063/1.2946722

    Article  CAS  Google Scholar 

  44. N. Hirayama, T. Iida, M. Sakamoto, K. Nishio, N. Hamada, Substitutional and interstitial impurity p-type doping of thermoelectric Mg2Si: a theoretical study. Sci. Technol. Adv. Mater. 20(1), 160–172 (2019). https://doi.org/10.1080/14686996.2019.1580537

    Article  CAS  Google Scholar 

  45. A. Tura, Z. Zhang, P. Liu, Y.H. Xie, J.C. Woo, Vertical silicon pnpn tunnel nMOSFET with MBE-grown tunneling junction. IEEE Trans. Electron Devices 58(7), 1907–1913 (2011). https://doi.org/10.1109/TED.2011.2148118

    Article  CAS  Google Scholar 

  46. M. Pala, D. Esseni, F. Conzatti, Impact of interface traps on the IV curves of InAs tunnel-FETs and MOSFETs: a full quantum study, IEEE International Electron Devices Meeting (IEDM), pp. 6–6, (2012). https://doi.org/10.1109/IEDM.2012.6478992

  47. G.F. Jiao, Z.X. Chen, H.Y. Yu, X.Y. Huang, D.M. Huang, N. Singh, G.Q. Lo, D.L. Kwong, M.F. Li, New degradation mechanisms and reliability performance in tunneling field effect transistors, IEEE International Electron Devices Meeting (IEDM), pp. 1–4, (2009). https://doi.org/10.1109/IEDM.2009.5424 234

  48. E.H. Poindexter, MOS interface states: overview and physicochemical perspective. Semicond. Sci. Technol. 4(12), 961 (1989). https://doi.org/10.1088/0268-1242/4/12/001

    Article  CAS  Google Scholar 

  49. L. Trabzon, O.O. Awadelkarim, Damage to n-MOSFETs from electrical stress relationship to processing damage and impact on device reliability. Microelectron. Reliab. 38(4), 651–657 (1998). https://doi.org/10.1016/S0026-2714(97)00194-7

    Article  Google Scholar 

  50. Y. Wu, K. Kakushima, Y. Takahashi, Formation of magnesium silicide for source material in Si based tunnel FET by annealing of Mg/Si thin film multi-stacks, 17th International Workshop on Junction Technology (IWJT), IEEE, pp. 83–84, (2017). https://doi.org/10.23919/IWJT.2017.7966522

  51. S. Guha, P. Pachal, S. Ghosh, S.K. Sarkar, Analytical model of a novel double gate metal-infused stacked gate-oxide tunnel field-effect transistor (TFET) for low power and high-speed performance. Superlattices Microstruct. 146, 106657 (2020). https://doi.org/10.1016/j.spmi.2020.106657

    Article  CAS  Google Scholar 

  52. V. Brouzet, B. Salem, P. Periwal, R. Alcotte, F. Chouchane, F. Bassani, T. Baron, G. Ghibaudo, Fabrication and electrical characterization of homo-and hetero-structure Si/SiGe nanowire tunnel field effect transistor grown by vapor–liquid–solid mechanism. Solid State Electron. 118, 26–29 (2016). https://doi.org/10.1016/j.sse.2016.01.005

    Article  CAS  Google Scholar 

  53. K.K. Bhuwalka, S. Sedlmaier, A.K. Ludsteck, C. Tolksdorf, J. Schulze, I. Eisele, Vertical tunnel field-effect transistor. IEEE Trans. Electron Devices 51(2), 279–282 (2004). https://doi.org/10.1109/TED.2003.821575

    Article  CAS  Google Scholar 

  54. W.Y. Choi, H.K. Lee, Demonstration of hetero-gate-dielectric tunneling field-effect transistors (HG TFETs). Nano Converg. 3(1), 1–15 (2016). https://doi.org/10.1186/s40580-016-0073-y

    Article  CAS  Google Scholar 

  55. J.W. Lee, W.Y. Choi, Design guidelines for gate-normal hetero-gate-dielectric (GHG) tunnel field-effect transistors (TFETs). IEEE Access 8, 67617–67624 (2020). https://doi.org/10.1109/ACCESS.2020.2985125

    Article  Google Scholar 

  56. K.S. Singh, S. Kumar, K. Nigam, Impact of interface trap charges on analog/RF and linearity performances of dual-material gate-oxide-stack double-gate TFET. IEEE Trans. Device Mater. Reliab. (2020). https://doi.org/10.1109/TDMR.2020.2984669

    Article  Google Scholar 

  57. A.K. Singh, M.R. Tripathy, K. Baral, P.K. Singh, S. Jit, Impact of interface trap charges on device level performances of a lateral/vertical gate stacked Ge/Si TFET-on-SELBOX-substrate. Appl. Phys. A 126(9), 1–11 (2020). https://doi.org/10.1007/s00339-020-03869-9

    Article  CAS  Google Scholar 

  58. S. Mookerjea, R. Krishnan, S. Datta, V. Narayanan, On enhanced Miller capacitance effect in interband tunnel transistors. IEEE Electron Device Lett. 30(10), 1102–1104 (2009). https://doi.org/10.1109/LED.2009.2028907

    Article  CAS  Google Scholar 

  59. S. Gupta, K. Nigam, S. Pandey, D. Sharma, P.N. Kondekar, Effect of interface trap charges on performance variation of heterogeneous gate dielectric junctionless-TFET. IEEE Trans. Electron Devices 64(11), 4731–4737 (2017). https://doi.org/10.1109/TED.2017.2754297

    Article  CAS  Google Scholar 

  60. K. Pradhan, S.K. Mohapatra, P. Sahu, D. Behera, Impact of high-k gate dielectric on analog and RF performance of nanoscale DG-MOSFET. Microelectron. J. 45(2), 144–151 (2014). https://doi.org/10.1016/j.mejo.2013.11.016

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors would like to thank Vice Chancellors of Chitkara University, Punjab and Chitkara University, Himachal Pradesh for their support and permission to communicate this research paper. All the members of VLSI Center of Excellence, Chitkara University, Punjab are thanked for their time to engage in valuable discussions related to this work. Dr Rahul Pandey acknowledges the support from DST SRG to procure SILVACO ATLAS tool with file no. SRG/2019/000941.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jaya Madan, Rahul Pandey or Rajnish Sharma.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dassi, M., Madan, J., Pandey, R. et al. Impact of interfacial charges on analog and RF performance of Mg2Si source heterojunction double-gate tunnel field effect transistor. J Mater Sci: Mater Electron 32, 23863–23879 (2021). https://doi.org/10.1007/s10854-021-06823-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-06823-4

Navigation