Skip to main content

Advertisement

Log in

The effects of Bi substitution for Sn on mechanical properties of Sn-based lead-free solders

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Pb-free solders are gaining ground as the optimum choice for electrical interconnect materials, however, their higher melting temperature around 217 °C is still an issue that restricts wider adoption. The potential to employ Bi substitution for Sn to lower solder joint processing temperatures has been widely considered. In this work, the mechanical properties of eutectic SAC with gradually increasing Bi substitution up to 10 wt% Bi was studied. It is shown that fracture strength (\({{\varvec{\sigma}}}_{{\varvec{f}}})\) increases with Bi additions from 50 MPa plateauing at 60 MPa between 1.4 and 1.8% Bi which represents the limits of solid solution strengthening. Over this substitutional range, strain at fracture (\({{\varvec{\varepsilon}}}_{{\varvec{f}}})\) dropped from 30 to 10% which was also evidenced by smaller percentage reduction in area (%RA). The \({{\varvec{\sigma}}}_{{\varvec{f}}}\) was nearly 80 MPa for 2% Bi increasing gradually with increasing Bi concentrations and peaking at 93 MPa for 7% Bi whilst maintaining 10% elongation at fracture. X-ray diffraction and DSC thermal studies suggests that the solubility limit of Bi in \({\varvec{\beta}}\)-Sn (in the multicomponent SAC) is less than 2 wt% Bi. With the aid of small-angle neutron Scattering (SANS) and ultra-small-angle neutron scattering (USANS), it was found that the scattering intensity changes for alloys with Bi content in the range 0.8 – 1.5wt% compared to ternary SAC with less than 0.8% Bi at low scattering factors (Q > \({10}^{-2}{\boldsymbol{\AA }}^{-1}\)) signifying microstructural differences at length scales of the order of 10–100 nm. There were no differences observed in scattering for alloy samples with more than 2 wt% Bi.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Data Availability

Not Applicable.

Code availability

Not Applicable.

References

  1. S. Cheng, C.-M. Huang, M. Pecht, Microelectron. Reliab. 75, 77 (2017)

    Article  CAS  Google Scholar 

  2. X. Hu, Y. Li, Y. Liu, Z. Min, J. Alloy. Compd. 625, 241 (2015)

    Article  CAS  Google Scholar 

  3. J. Shen, Y. Pu, D. Wu, Q. Tang, M. Zhao, J. Mater. Sci.: Mater. Electron. 26, 1572 (2015)

    CAS  Google Scholar 

  4. R. Coyle, J. Osenbach, M.N. Collins, H. McCormick, P. Read, D. Fleming, R. Popowich, J. Punch, M. Reid, S. Kummerl, IEEE Trans. Compon. Packaging Manuf. Technol. 1, 1583 (2011)

    Article  CAS  Google Scholar 

  5. M.N. Collins, J. Punch, R. Coyle, M. Reid, R. Popowich, P. Read, D. Fleming, IEEE Trans. Compon. Packaging Manuf. Technol. 1, 1594 (2011)

    Article  CAS  Google Scholar 

  6. M.E. Loomans, M.E. Fine, Metall. Mater. Trans. A 31, 1155 (2000)

    Article  Google Scholar 

  7. E. Dalton, G. Ren, J. Punch, M.N. Collins, Mater. Des. 154, 184 (2018)

    Article  CAS  Google Scholar 

  8. K.-W. Moon, W.J. Boettinger, U.R. Kattner, F.S. Biancaniello, C.A. Handwerker, J. Electron. Mater. 29, 1122 (2000)

    Article  CAS  Google Scholar 

  9. S. Zhang, X. Xu, T. Lin, P. He, J. Mater. Sci.: Mater. Electron. 30, 13855 (2019)

    CAS  Google Scholar 

  10. S. Li, X. Wang, Z. Liu, J. Yongtao, Z. Shuye, G. Jinfeng, X. Chen, W. Shengjin, P. He, W. Long, J. Mater. Sci.: Mater. Electron. 31, 9076 (2020)

    CAS  Google Scholar 

  11. M.L. Huang, L. Wang, Metall. and Mater. Trans. A. 36, 1439 (2005)

    Article  Google Scholar 

  12. D. Witkin, J. Electron. Mater. 41, 190 (2012)

    Article  CAS  Google Scholar 

  13. X. Hu, Y. Li, Y. Liu, Z. Min, J. Alloys Compd. 625, 241 (2015)

    Article  CAS  Google Scholar 

  14. A. Olofinjana, R. Haque, M. Mathir, N.Y. Voo, Procedia Manuf. 30, 596 (2019)

    Article  Google Scholar 

  15. G. Ren, I.J. Wilding, M.N. Collins, J. Alloys Compd. 665, 251 (2016)

    Article  CAS  Google Scholar 

  16. C.-B. Lee, S.-B. Jung, Y.-E. Shin, C.-C. Shur, Mater. Trans. 43, 1858 (2002)

    Article  CAS  Google Scholar 

  17. Y.-W. Yen, C.-C. Jao, C. Lee, J. Mater. Res. 21, 2986 (2006)

    Article  CAS  Google Scholar 

  18. T. Laurila, J. Hurtig, V. Vuorinen, J.K. Kivilahti, Microelectron. Reliab. 49, 242 (2009)

    Article  CAS  Google Scholar 

  19. I.E. Anderson, A. Boesenberg, J. Harringa, D. Riegner, A. Steinmetz, D. Hillman, J. Electron. Mater. 41, 390 (2012)

    Article  CAS  Google Scholar 

  20. A.S. Basin, A.B. Kaplun, A.B. Meshalkin, N.F. Uvarov, Russ. J. Inorganic Chem. 53, 1509 (2008)

    Article  Google Scholar 

  21. K. Wood, J.P. Mata, C.J. Garvey, C.-M. Wu, W.A. Hamilton, P. Abbeywick, D. Bartlett, F. Bartsch, P. Baxter, N. Booth, W. Brown, J. Christoforidis, D. Clowes, T. d’Adam, F. Darmann, M. Deura, S. Harrison, N. Hauser, G. Horton, D. Federici, F. Franceschini, P. Hanson, E. Imamovic, P. Imperia, M. Jones, S. Kennedy, S. Kim, T. Lam, W.T. Lee, M. Lesha, D. Mannicke, T. Noakes, S.R. Olsen, J.C. Osborn, D. Penny, M. Perry, S.A. Pullen, R.A. Robinson, J.C. Schulz, N. Xiong, E.P. Gilbert, J. Appl. Crystallogr. 51, 294 (2018)

    Article  CAS  Google Scholar 

  22. C. Rehm, L. de Campo, A. Brûlé, F. Darmann, F. Bartsch, A. Berry, J. Appl. Crystallogr. 51, 1 (2018)

    Article  CAS  Google Scholar 

  23. S.R. Kline, J. Appl. Crystallogr. 39, 895 (2006)

    Article  CAS  Google Scholar 

  24. F.X. Che, J.H.L. Pang, J. Alloys Compd. 541, 6 (2012)

    Article  CAS  Google Scholar 

  25. H.R. Kotadia, P.D. Howes, S.H. Mannan, Microelectron. Reliab. 54, 1253 (2014)

    Article  CAS  Google Scholar 

  26. R. Sayyadi, H. Naffakh-Moosavy, Sci. Rep. 9, 8389 (2019)

    Article  Google Scholar 

  27. A.A. El-Daly, W.M. Desoky, A.F. Saad, N.A. Mansor, E.H. Lotfy, H.M. Abd-Elmoniem, H. Hashem, Mater. Des. 80, 152 (2015)

    Article  CAS  Google Scholar 

  28. A.A. El-Daly, A.M. El-Taher, S. Gouda, J. Alloys Compd. 627, 268 (2015)

    Article  CAS  Google Scholar 

  29. H. Wang, S. Xue, J. Wang, J. Mater. Sci.: Mater. Electron. 28, 8246 (2017)

    CAS  Google Scholar 

  30. J. Xu, S. Xue, P. Xue, W.-M. Long, Q.-K. Zhang, J. Mater. Sci.: Mater. Electron. 27, 8771 (2016)

    CAS  Google Scholar 

  31. H. Chen, J. Liao, S. Wu, L. Gong, J. Wang, H. Wang, J. Mater. Sci.: Mater. Electron. 29, 12662 (2018)

    CAS  Google Scholar 

  32. E.E.M. Noor, A. Singh, Soldering & Surface Mount Technology 26, 147 (2014)

    Article  CAS  Google Scholar 

  33. R. Sayyadi, H. Naffakh-Moosavy, Mater. Sci. Eng., A 735, 367 (2018)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge AINSE for awarding grant No. 8285 to carry out neutron diffraction studies at ANSTO.

Funding

The neutron scattering studies reported in this work was carried out at Australian Nuclear Science and Technology Organisation (ANSTO), funded with AINSE grant No. 8285.

Author information

Authors and Affiliations

Authors

Contributions

AO, RH, and DK were responsible for project conceptualization. AO, RH, and LS carried out all laboratory tests and developed methodology. Nuclear Scattering experiments including interpretation of results by JM, RH, and DK. MR, and LS contributed to writing—original draft preparation, AO, DK, and RH carried out the review and editing. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Ayodele Olofinjana.

Ethics declarations

Conflicts of interest

The authors have no conflict of interest.

Ethics approval

Not Applicable.

Consent to participate

All authors consent to participate in this work.

Consent for publication

All authors have consented to the publication of this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raza, M., Shewchenko, L., Olofinjana, A. et al. The effects of Bi substitution for Sn on mechanical properties of Sn-based lead-free solders. J Mater Sci: Mater Electron 32, 22155–22167 (2021). https://doi.org/10.1007/s10854-021-06691-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-06691-y

Navigation