Skip to main content

Advertisement

Log in

Relaxor ferroelectric (Bi0.5Na0.5)TiO3-based ceramic with remarkable comprehensive energy storage performance under low electric field for capacitor applications

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Although high-applied electric field can usually generate high energy storage performance (ESP) for most dielectric materials, the presence of high risk at high electric field and large cost of insulation technology are the main obstacles that critically restrict the actual applications of dielectric ceramics in the energy storage area. Herein, simultaneously realizing high energy storage density (Wrec)/efficiency (η) and charge–discharge performance under low working electric fields is proposed in relaxor ferroelectrics via combining the non-ergodic and ergodic relaxor state (NR-ER) and dominated ER features. Based on this idea, a high Wrec (2.03 J/cm3) and favorable η (72%), together with excellent frequency dependence (0.5–100 Hz), moderate temperature stability (20–140 °C, and satisfactory fatigue endurance (100–105 cycles), can be simultaneously achieved in 0.3[0.955(Bi0.5Na0.5)TiO3–0.045Ba(Al0.5Ta0.5)O3]–0.7Sr0.3(Bi0.7Na0.67Li0.03)0.5TiO3 (BNT–BAT–0.7SBNLT) ceramic at a low electric field of 200 kV/cm. Moreover, the indicated ceramics also possess great charge–discharge performance at 140 kV/cm, featured by a large power density PD of 46.2 MW/cm3, discharge energy density Wd of 0.62 J/cm3, fast charge-discharge rate t0.9 of 210 ns, and excellent cycling reliability. Thus, the designed BNT–BAT–0.7SBNLT ceramic possesses superior comprehensive ESP under low electric field, which has broad prospects in practical high-power ceramic capacitors applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. H. Qi, R. Zuo, A. Xie, A. Tian, J. Fu, Y. Zhang, S. Zhang, Ultrahigh energy-storage density in NaNbO3‐based lead‐free relaxor antiferroelectric ceramics with nanoscale domains. Adv. Funct. Mater. 29, 1903877 (2019)

    Article  CAS  Google Scholar 

  2. T. Zhang, W. Li, Y. Zhao, Y. Yu, W. Fei, High energy storage performance of opposite double-heterojunction ferroelectricity–insulators. Adv. Funct. Mater. 28, 1706211 (2018)

    Article  CAS  Google Scholar 

  3. J. Gao, Y. Liu, Y. Wang, D. Wang, L. Zhong, X. Ren, High temperature-stability of (Pb0.9La0.1)(Zr0.65Ti0.35)O3 ceramic for energy-storage applications at finite electric field strength. Scr. Mater. 137, 114–118 (2017)

    Article  CAS  Google Scholar 

  4. D. Li, Y. Lin, Q. Yuan, M. Zhang, L. Ma, H. Yang, A novel lead-free Na0. 5Bi0. 5TiO3-based ceramic with superior comprehensive energy storage and discharge properties for dielectric capacitor applications. J. Materiomics. 6, 743–750 (2020)

    Article  Google Scholar 

  5. F. Si, B. Tang, Z. Fang, H. Li, S. Zhang, A new type of BaTiO3-based ceramics with Bi(Mg1/2Sn1/2)O3 modification showing improved energy storage properties and pulsed discharging performances. J. Alloys Compd. 819, 153004 (2019)

    Article  CAS  Google Scholar 

  6. F. Gao, X. Dong, C. Mao, W. Liu, H. Zhang, L. Yang, F. Cao, G. Wang, Energy-storage properties of 0.89Bi0.5Na0.5TiO3–0.06BaTiO3–0.05K0.5Na0.5NbO3 lead-free anti-ferroelectric ceramics. J. Am. Ceram. Soc. 94, 4382–4386 (2011)

    Article  CAS  Google Scholar 

  7. R. Zhang, L. Zhao, Za. Zhang, X. Zhang, Q. Jin, B. Cui, Boosting energy storage performance in Ba0.8Sr0.2Zr0.1Ti0.9O3–Na0.5Bi0.5TiO3 lead-free nanoceramics through polar nanoregions and grain refinement engineering. J. Mater. Sci. Mater. Electron. 32, 7259–7270 (2021)

    Article  CAS  Google Scholar 

  8. R. Dittmer, W. Jo, J. Rödel, S. Kalinin, N. Balke, Nanoscale insight into lead-free BNT–BT–xKNN. Adv. Funct. Mater. 22, 4208–4215 (2012)

    Article  CAS  Google Scholar 

  9. F. Yan, X. Zhou, X. He, H. Bai, J. Zhai, Superior energy storage properties and excellent stability achieved in environment-friendly ferroelectrics via composition design strategy. Nano Energy 75, 105012 (2020)

    Article  CAS  Google Scholar 

  10. H. Qi, A. Xie, A. Tian, R. Zuo, Superior energy-storage capacitors with simultaneously giant energy density and efficiency using nanodomain engineered BiFeO3–BaTiO3–NaNbO3 lead-free bulk ferroelectrics. Adv. Energy. Mater. 10, 1903338 (2020)

    Article  CAS  Google Scholar 

  11. J. Gao, Y. Wang, Y. Liu, X. Hu, X. Ke, L. Zhong, Y. He, X. Ren, Enhancing dielectric permittivity for energy-storage devices through tricritical phenomenon. Sci. Rep. 7, 40916 (2017)

    Article  CAS  Google Scholar 

  12. M. Hara, J. Gerhold, Electrical insulation specification and design method for superconducting power equipment. Cryogenics 38, 1053–1061 (1998)

    Article  CAS  Google Scholar 

  13. S.R. Reddy, V.V.B. Prasad, S. Bysakh, V. Shanker, N. Hebalkar, S.K. Roy, Superior energy storage performance and fatigue resistance in ferroelectric BCZT thin films grown in an oxygen-rich atmosphere. J. Mater. Chem. C 7, 7073–7082 (2019)

    Article  CAS  Google Scholar 

  14. A. Chauhan, S. Patel, R. Vaish, C.R. Bowen, Anti-ferroelectric ceramics for high energy density capacitors. Materials 8, 8009–8031 (2015)

    Article  Google Scholar 

  15. L. Zhang, Y. Pu, M. Chen, Influence of BaZrO3 additive on the energy-storage properties of 0.775Na0.5Bi0.5TiO3–0.225BaSnO3 relaxor ferroelectrics. J. Alloys Compd. 775, 342–347 (2019)

    Article  CAS  Google Scholar 

  16. Z. He, H. Li, Z. Qing, M. Zeng, J. li, L. Zhou, X. Zhong, J. Liu, Temperature stability of lead-free BST-BZN relaxor ferroelectric ceramics for energy storage capacitors. J. Mater. Sci. Mater. Electron. 32, 752–763 (2021)

    Article  CAS  Google Scholar 

  17. N. Sun, Y. Li, X. Liu, X. Hao, High energy-storage density under low electric field in lead-free relaxor ferroelectric film based on synergistic effect of multiple polar structures. J. Power Sources 448, 227457 (2020)

    Article  CAS  Google Scholar 

  18. B. Xie, Y. Zhu, M.A. Marwat, S. Zhang, L. Zhang, H. Zhang, Tailoring the energy storage performance of polymer nanocomposites with aspect ratio optimized 1D nanofillers. J. Mater. Chem. A 6, 20356–20364 (2018)

    Article  CAS  Google Scholar 

  19. H. Pan, F. Li, Y. Liu, Q. Zhang, C.W. Nan, Ultrahigh–energy density lead-free dielectric films via polymorphic nanodomain design. Science 365, 578–582 (2019)

    Article  CAS  Google Scholar 

  20. Z. Lu, G. Wang, W. Bao, J. Li, L. Li, A. Mostaed, H. Yang, H. Ji, D. Li, A. Feteira, F. Xu, D.C. Sinclair, D. Wang, S.-Y. Liu, I.M. Reaney, Superior energy density through tailored dopant strategies in multilayer ceramic capacitors. Energy Environ. Sci. 13, 2938–2948 (2020)

    Article  CAS  Google Scholar 

  21. W. Bai, Y. Bian, J. Hao, B. Shen, J. Zhai, The composition and temperature-dependent structure evolution and large strain response in (1 – x)(Bi0.5Na0.5)TiO3 – xBa(Al0.5Ta0.5)O3 ceramics. J. Am. Ceram. Soc. 96, 246–252 (2013)

    Article  CAS  Google Scholar 

  22. J. Wu, A. Mahajan, L. Riekehr, H. Zhang, B. Yang, N. Meng, Z. Zhang, H. Yan, Perovskite Srx(Bi1 – xNa0.97–xLi0.03)0.5TiO3 ceramics with polar nano regions for high power energy storage. Nano Energy 50, 723–732 (2018)

    Article  CAS  Google Scholar 

  23. T. Tunkasiri, G. Rujijanagul, Dielectric strength of fine grained barium titanate ceramics. J. Mater. Sci. Lett. 15, 1767–1769 (1996)

    Article  CAS  Google Scholar 

  24. J. Boonlakhorn, P. Thongbai, B. Putasaeng, T. Yamwong, S. Maensiri, Very high-performance dielectric properties of Ca1 – 3x/2YbxCu3Ti4O12 ceramics. J. Alloys Compd. 612, 103–109 (2014)

    Article  CAS  Google Scholar 

  25. X. Qiao, D. Wu, F. Zhang, M. Niu, B. Chen, X. Zhao, P. Liang, L. Wei, X. Chao, Z. Yang, Enhanced energy density and thermal stability in relaxor ferroelectric Bi0.5Na0.5TiO3-Sr0.7Bi0.2TiO3 ceramics. J. Eur. Ceram. Soc. 39, 4778–4784 (2019)

    Article  CAS  Google Scholar 

  26. X. Qiao, F. Zhang, D. Wu, B. Chen, X. Zhao, Z. Peng, X. Ren, P. Liang, X. Chao, Z. Yang, Superior comprehensive energy storage properties in Bi0.5Na0.5TiO3-based relaxor ferroelectric ceramics. Chem. Eng. J. 388, 124158 (2020)

    Article  CAS  Google Scholar 

  27. B. Wylie-van Eerd, D. Damjanovic, N. Klein, N. Setter, J. Trodahl, Structural complexity of (Na0.5Bi0.5)TiO3–BaTiO3 as revealed by Raman spectroscopy. Phys. Rev. B 82, 104112 (2010)

    Article  CAS  Google Scholar 

  28. J.E. Daniels, W. Jo, J. Rödel, D. Rytz, W. Donner, Structural origins of relaxor behavior in a 0.96(Bi1/2Na1/2)TiO3–0.04BaTiO3 single crystal under electric field. Appl. Phys. Lett. 98, 252904 (2011)

    Article  CAS  Google Scholar 

  29. W. Jo, S. Schaab, E. Sapper, L.A. Schmitt, H.-J. Kleebe, A.J. Bell, J. Rödel, On the phase identity and its thermal evolution of lead free (Bi1/2Na1/2)TiO3-6 mol% BaTiO3. J. Appl. Phys. 110, 074106 (2011)

    Article  CAS  Google Scholar 

  30. W. Zhao, R. Zuo, D. Zheng, L. Li, Dielectric relaxor evolution and frequency-insensitive giant strains in (Bi0.5Na0.5)TiO3-modified Bi(Mg0.5Ti0.5)O3–PbTiO3 ferroelectric ceramics. J. Am. Ceram. Soc. 97, 1855–1860 (2014)

    Article  CAS  Google Scholar 

  31. W. Bai, D. Chen, P. Zheng, J. Xi, Y. Zhou, B. Shen, J. Zhai, Z. Ji, NaNbO3 templates-induced phase evolution and enhancement of electromechanical properties in grain oriented lead-free BNT-based piezoelectric materials. J. Eur. Ceram. Soc. 37, 2591–2604 (2017)

    Article  CAS  Google Scholar 

  32. J. Hao, Z. Xu, R. Chu, L. Wei, G. Li, Ultrahigh strain response with fatigue-free behavior in (Bi0.5Na0.5) TiO3-based lead-free piezoelectric ceramics. J. Phys. D Appl. Phys. 48, 472001 (2015)

    Article  CAS  Google Scholar 

  33. J. Li, F. Li, Z. Xu, S. Zhang, Multilayer lead-free ceramic capacitors with ultrahigh energy density and efficiency. Adv. Mater. 30, 1802155 (2018)

    Article  CAS  Google Scholar 

  34. H. Pan, J. Ma, J. Ma, Q. Zhang, X. Liu, B. Guan, L. Gu, X. Zhang, Y.-J. Zhang, L. Li, Y. Shen, Y.-H. Lin, C.-W. Nan, Giant energy density and high efficiency achieved in bismuth ferrite-based film capacitors via domain engineering. Nat. Commun. 9, 1813 (2018)

    Article  CAS  Google Scholar 

  35. Z. Yao, Z. Song, H. Hao, Z. Yu, H. Liu, Homogeneous/inhomogeneous-structured dielectrics and their energy-storage performances. Adv. Mater. 29, 1601727 (2017)

    Article  CAS  Google Scholar 

  36. H. Palneedi, M. Peddigari, G.T. Hwang, D.Y. Jeong, J. Ryu, High-performance dielectric ceramic films for energy storage capacitors: progress and outlook. Adv. Funct. Mater. 28, 1803665 (2018)

    Article  CAS  Google Scholar 

  37. W. Bai, X. Zhao, Y. Ding, L. Wang, P. Zheng, J. Hao, J. Zhai, Giant field-induced strain with low hysteresis and boosted energy storage performance under low electric field in (Bi0.5Na0.5)TiO3‐based grain orientation‐controlled ceramics. Adv. Electron. Mater. 6, 2000332 (2020)

    Article  CAS  Google Scholar 

  38. W. Bai, X. Zhao, Y. Huang, Y. Ding, L. Wang, P. Zheng, P. Li, J. Zhai, Integrating chemical engineering and crystallographic texturing design strategy for the realization of practically viable lead-free sodium bismuth titanate-based incipient piezoceramics. Dalton Trans. 49, 8661–8671 (2020)

    Article  CAS  Google Scholar 

  39. P. Zhao, H. Wang, L. Wu, L. Chen, Z. Cai, L. Li, X. Wang, High-performance relaxor ferroelectric materials for energy storage applications. Adv. Energy Mater. 9, 1803048 (2019)

    Article  CAS  Google Scholar 

  40. Y. Pu, L. Zhang, Y. Cui, M. Chen, High energy storage density and optical transparency of microwave sintered homogeneous (Na0.5Bi0.5)(1–x)BaxTi(1–y)SnyO3 ceramics. ACS Sustain. Chem. Eng. 6, 6102–6109 (2018)

    Article  CAS  Google Scholar 

  41. Y. Pu, M. Yao, L. Zhang, M. Chen, Enhanced energy storage density of 0.55Bi0.5Na0.5TiO3–0.45Ba0.85Ca0.15Ti0.85Zr0.1Sn0.05O3 with MgO addition. J. Alloys Compd. 702, 171–177 (2017)

    Article  CAS  Google Scholar 

  42. L. Zhang, Y. Pu, M. Chen, T. Wei, W. Keipper, R. Shi, X. Guo, R. Li, X. Peng, High energy-storage density under low electric fields and improved optical transparency in novel sodium bismuth titanate-based lead-free ceramics. J. Eur. Ceram. Soc. 40, 71–77 (2020)

    Article  CAS  Google Scholar 

  43. L. Zhang, Y. Pu, M. Chen, G. Liu, Antiferroelectric-like properties in MgO-modified 0.775Na0.5Bi0.5TiO3–0.225BaSnO3 ceramics for high power energy storage. J. Eur. Ceram. Soc. 38, 5388–5395 (2018)

    Article  CAS  Google Scholar 

  44. F. Yan, H. Yang, L. Ying, T. Wang, Enhanced energy storage properties of a novel lead-free ceramic with a multilayer structure. J. Mater. Chem. C 6, 7905–7912 (2018)

    Article  CAS  Google Scholar 

  45. Q. Xu, J. Xie, Z. He, L. Zhang, M. Cao, X. Huang, M.T. Lanagan, H. Hao, Z. Yao, H. Liu, Energy-storage properties of Bi0.5Na0.5TiO3–BaTiO3–KNbO3 ceramics fabricated by wet-chemical method. J. Eur. Ceram. Soc. 37, 99–106 (2017)

    Article  CAS  Google Scholar 

  46. X. Kong, L. Yang, Z. Cheng, S. Zhang, Ultrahigh energy storage properties in (Sr0.7Bi0.2)TiO3–Bi(Mg0.5Zr0.5)O3 lead-free ceramics and potential for high-temperature capacitors. Materials 13, 180 (2020)

    Article  CAS  Google Scholar 

  47. N. Luo, K. Han, L. Liu, B. Peng, X. Wang, C. Hu, H. Zhou, Q. Feng, X. Chen, Y. Wei, Lead-free Ag1–3xLaxNbO3 antiferroelectric ceramics with high‐energy storage density and efficiency. J. Am. Ceram. Soc. 102, 4640–4647 (2019)

    Article  CAS  Google Scholar 

  48. D. Zheng, R. Zuo, D. Zhang, Y. Li, Novel BiFeO3–BaTiO3–Ba(Mg1/3Nb2/3)O3 lead-free relaxor ferroelectric ceramics for energy‐storage capacitors. J. Am. Ceram. Soc. 98, 2692–2695 (2015)

    Article  CAS  Google Scholar 

  49. D. Zheng, R. Zuo, Enhanced energy storage properties in La(Mg1/2Ti1/2)O3-modified BiFeO3–BaTiO3 lead-free relaxor ferroelectric ceramics within a wide temperature range. J. Eur. Ceram. Soc. 37, 413–418 (2017)

    Article  CAS  Google Scholar 

  50. Y. Fan, Z. Zhou, R. Liang, X. Dong, Designing novel lead-free NaNbO3-based ceramic with superior comprehensive energy storage and discharge properties for dielectric capacitor applications via relaxor strategy. J. Eur. Ceram. Soc. 39, 4770–4777 (2019)

    Article  CAS  Google Scholar 

  51. N. Luo, K. Han, F. Zhuo, C. Xu, G. Zhang, L. Liu, X. Chen, C. Hu, H. Zhou, Y. Wei, Correction: aliovalent A-site engineered AgNbO3 lead-free antiferroelectric ceramics toward superior energy storage density. J. Mater. Chem. A 7, 15450 (2019)

    Article  CAS  Google Scholar 

  52. Z. Yang, H. Du, L. Jin, Q. Hu, S. Qu, Z. Yang, Y. Yu, X. Wei, Z. Xu, A new family of sodium niobate-based dielectrics for electrical energy storage applications. J. Eur. Ceram. Soc. 39, 2899–2907 (2019)

    Article  CAS  Google Scholar 

  53. W.B. Li, D. Zhou, L.X. Pang, R. Xu, H.H. Guo, Novel barium titanate based capacitors with high energy density and fast discharge performance. J. Mater. Chem. A 5, 19607–19612 (2017)

    Article  CAS  Google Scholar 

  54. J. Shi, X. Chen, X. Li, J. Sun, C. Sun, F. Pang, H. Zhou, Realizing ultrahigh recoverable energy density and superior charge-discharge performance in NaNbO3-based lead-free ceramics: via a local random field strategy. J. Mater. Chem. C 8, 3784–3794 (2020)

    Article  CAS  Google Scholar 

  55. P. Zhao, B. Tang, Z. Fang, F. Si, C. Yang, G. Liu, S. Zhang, Structure, dielectric and relaxor properties of Sr0.7Bi0.2TiO3K0.5Bi0.5TiO3 lead-free ceramics for energy storage applications. J. Materiomics. 7, 195–207 (2021)

    Article  Google Scholar 

  56. P. Zhao, B. Tang, F. Si, C. Yang, H. Li, S. Zhang, Novel Ca doped Sr0.7Bi0.2TiO3 lead-free relaxor ferroelectrics with high energy density and efficiency. J. Eur. Ceram. Soc. 40, 1938–1946 (2020)

    Article  CAS  Google Scholar 

  57. Z. Mingxing, L. Ruihong, Z. Zhiyong, D. Xianlin, Novel BaTiO3-based lead-free ceramic capacitors featuring high energy storage density, high power density, and excellent stability. J. Mater. Chem. C 6, 8528–8537 (2018)

    Article  Google Scholar 

  58. N. Liu, R. Liang, Z. Zhou, X. Dong, Designing lead-free bismuth ferrite-based ceramics learning from relaxor ferroelectric behavior for simultaneous high energy density and efficiency under low electric field. J. Mater. Chem. C 6, 10211–10217 (2018)

    Article  CAS  Google Scholar 

  59. G. Liu, Y. Li, B. Guo, M. Tang, Q. Li, J. Dong, L. Yu, K. Yu, Y. Yan, D. Wang, L. Zhang, H. Zhang, Z. He, L. Jin, Ultrahigh dielectric breakdown strength and excellent energy storage performance in lead-free barium titanate-based relaxor ferroelectric ceramics via a combined strategy of composition modification, viscous polymer processing, and liquid-phase sintering. Chem. Eng. J. 398, 125625 (2020)

    Article  CAS  Google Scholar 

  60. P. Zhao, B. Tang, Z. Fang, F. Si, C. Yang, S. Zhang, Improved dielectric breakdown strength and energy storage properties in Er2O3 modified Sr0.35Bi0.35K0.25TiO3. Chem. Eng. J. 403, 126290 (2021)

    Article  CAS  Google Scholar 

  61. L. Yang, X. Kong, Z. Cheng, S. Zhang, Ultra-high energy storage performance with mitigated polarization saturation in lead-free relaxors. J. Mater. Chem. A 7, 8573–8580 (2019)

    Article  CAS  Google Scholar 

  62. G. Liu, M. Tang, X. Hou, B. Guo, J. Lv, J. Dong, Y. Wang, Q. Li, K. Yu, Y. Yan, L. Jin, Energy storage properties of bismuth ferrite based ternary relaxor ferroelectric ceramics through a viscous polymer process. Chem. Eng. J. 412, 127555 (2021)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the Natural Science Foundation of Zhejiang Province (LY20E020008, LQ16E020004), and the National Natural Science Foundation of China (Grant No. 51802063, 51502067).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wangfeng Bai, Peng Zheng or Jiwei Zhai.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Ding, Y., Li, C. et al. Relaxor ferroelectric (Bi0.5Na0.5)TiO3-based ceramic with remarkable comprehensive energy storage performance under low electric field for capacitor applications. J Mater Sci: Mater Electron 32, 21164–21177 (2021). https://doi.org/10.1007/s10854-021-06615-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-06615-w

Navigation