Skip to main content
Log in

Influence of the structural matrix on the attenuation parameters of some iron-borophosphate glasses

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

A set of glasses composed of seven samples was prepared using the fast cooling mechanism for glass preparation. The synthesis processes based on the molar chemical formula; (60 − x) mole% B2O3x mole% P2O5—25 mol% Na2O—15 mol% FeO, where x = 0, 10, 20, 30, 40, 50 and 60 mol%. The obtained samples represented three different types of oxide glasses, pure borate glass (x = 0), Borophosphate glass (x = 10, 20, 30, 40, 50), and pure phosphate glass (x = 60). FTIR showed the non-crystalline natures of the as-prepared samples, and also, showed that some Iron cations share the tetrahedral glass positions as FeO4 to act as a glass network formers. At the same time, some other occupied the octahedral vacancies as FeO6 to act as a glass network modifiers. As B2O3 replaced by P2O5, all the density, molar volume, calculated static refractive index, and metallization factor increased. The Phy-X/PSD software was used to study the gamma attenuation and buildup parameters EBF and EABF for the studied glasses in the range of photon energy from 0.015 to 15 MeV. Phosphate-rich glasses showed comparable shielding ability concerning some standard glass samples (RS-253-G18, RS-360, and RS-520).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. G. Susoy, Effect of TeO2 additions on nuclear radiation shielding behavior of Li2O–B2O3–P2O5–TeO2 glass-system. Ceram. Int. 46(3), 3844–3854 (2020). https://doi.org/10.1016/j.ceramint.2019.10.108

    Article  CAS  Google Scholar 

  2. G. Lakshminarayana, S.O. Baki, A. Lira, I.V. Kityk, U. Caldiño, K.M. Kaky, M.A. Mahdi, Structural, thermal and optical investigations of Dy3+-doped B2O3–WO3–ZnO–Li2O–Na2O glasses for warm white light emitting applications. J. Lumin. 186, 283–300 (2017). https://doi.org/10.1016/j.jlumin.2017.02.049

    Article  CAS  Google Scholar 

  3. H.O. Tekina, O. Kilicoglu, E. Kavaz, E.E. Altunsoy, M. Almatari, O. Agar, M.I. Sayyed, The investigation of gamma-ray and neutron shielding parameters of Na2OCaO–P2O5–SiO2 bioactive glasses using MCNPX code. Results Phys. 12, 1797–1804 (2019). https://doi.org/10.1016/j.rinp.2019.02.017

    Article  Google Scholar 

  4. H.O. Tekina, E. Kavaz, E.E. Altunsoy, O. Kilicoglu, O. Agar, T.T. Erguzel, M.I. Sayyed, An extensive investigation on gamma-ray and neutron attenuation parameters of cobalt oxide and nickel oxide substituted bioactive glasses. Ceram. Int. 45, 9934–9949 (2019). https://doi.org/10.1016/j.ceramint.2019.02.036

    Article  CAS  Google Scholar 

  5. M.I. Sayyeda, K.M. Kaky, D.K. Gaikwad, O. Agar, U.P. Gawai, S.O. Baki, Physical, structural, optical and gamma radiation shielding properties of borate glasses containing heavy metals (Bi2O3/MoO3). Non-Cryst. Solids 507, 30–37 (2019). https://doi.org/10.1016/j.jnoncrysol.2018.12.010

    Article  CAS  Google Scholar 

  6. M.G. Dong, O. Agar, H.O. Tekin, O. Kilicoglu, K.M. Kaky, M.I. Sayyed, A comparative study on gamma photon shielding features of various germanate glass systems. J. Compos. B Eng. 165, 636–647 (2019). https://doi.org/10.1016/j.compositesb.2019.02.022

    Article  CAS  Google Scholar 

  7. H.O. Tekina, E.E. Altunsoy, E. Kavaz, M.I. Sayyed, O. Agar, M. Kamislioglu, Photon and neutron shielding performance of boron phosphate glasses for diagnostic radiology facilities. J. Results Phys. 12, 1457–1464 (2019). https://doi.org/10.1016/j.rinp.2019.01.060

    Article  Google Scholar 

  8. M.I. Sayyed, Bismuth modified shielding properties of zinc boro-tellurite glasses. J. Alloy. Comp. 688, 111–117 (2016). https://doi.org/10.1016/j.jallcom.2016.07.153

    Article  CAS  Google Scholar 

  9. R. El-Mallawany, M.I. Sayyed, M.G. Dong, Comparative shielding properties of some tellurite glasses: Part 2. J. Non-Cryst. Solids 474, 16–23 (2017). https://doi.org/10.1016/j.jnoncrysol.2017.08.011

    Article  CAS  Google Scholar 

  10. A. Kumar, Gamma ray shielding properties of PbO–Li2O–B2O3 glasses. J. Radiat. Phys. Chem. 136, 50–53 (2017). https://doi.org/10.1016/j.radphyschem.2017.03.023

    Article  CAS  Google Scholar 

  11. L. Muñoz-Senovilla, G. Tricot, F. Muñoz, Kinetic fragility and structure of lithium borophosphate glasses analysed by 1D/2D NMR. Phys. Chem. Chem. Phys. 19, 22777–22784 (2017). https://doi.org/10.1039/c7cp04171c

    Article  CAS  Google Scholar 

  12. A.J. Parsons, N. Sharmin, S.I.S. Shaharuddin, M. Marshall, Viscosity profiles of phosphate glasses through combined quasi-static and bob-in-cup methods. J. Non-Cryst. Solids 408, 76–86 (2015). https://doi.org/10.1016/j.jnoncrysol.2014.10.014

    Article  CAS  Google Scholar 

  13. I.W. Donald, Preparation, properties and chemistry of glass and glass-ceramic-to-metal seals and coatings. J. Mater. Sci. 28, 2841–2886 (1993)

    Article  CAS  Google Scholar 

  14. Y.S. Kim, K.H. Lee, T.H. Kim, Y.J. Jung, B.K. Ryu, Nucleation and crystallization of phosphate glass for a PDP barrier rib by differential thermal analysis. Electron. Mater. Lett. 4, 1 (2008)

    CAS  Google Scholar 

  15. H. Takebe, T. Harada, M. Kawabata, Effect of B2O3 addition on the thermal properties and density of barium phosphate glasses. J. Non-Cryst. Solids 352, 709–713 (2006). https://doi.org/10.1016/j.jnoncrysol.2005.11.066

    Article  CAS  Google Scholar 

  16. J.F. Ducel, J.J. Videau, Physical and chemical characterizations of sodium borophosphate glasses. Mater. Lett. 13, 271–274 (1992). https://doi.org/10.1016/0167-577X(92)90230-H

    Article  CAS  Google Scholar 

  17. P. Subbalakshmi, N. Veeraiah, Study of CaO–WO3–P2O5 glass system by dielectric properties, IR spectra and differential thermal analysis. J. Non-Cryst. Solids 298, 89–98 (2002). https://doi.org/10.1016/S0022-3093(01)01039-0

    Article  CAS  Google Scholar 

  18. P.S. Gahlot, V.P. Seth, A. Agarwal, N. Kisore, S.K. Gupta, M. Arora, D.R. Goyal, Influence of ZnO on optical properties and dc conductivity of vanadyl-doped alkali bismuthate glasses. Radiat. Eff. Defects Solids 159, 223–231 (2004). https://doi.org/10.1080/1042015042000209334

    Article  CAS  Google Scholar 

  19. M.V. Rao, V.V.R.K. Kumar, N.K. Shihab, D.N. Rao, Z-scan studies of barium bismuth borate glasses. Opt. Mater. 84, 178–183 (2018). https://doi.org/10.1016/j.optmat.2018.06.066

    Article  CAS  Google Scholar 

  20. M.S. Al-Buriahi, Y.S. Rammah, Investigation of the physical properties and gamma-ray shielding capability of borate glasses containing PbO, Al2O3 and Na2O. Appl. Phys. A 125, 717 (2019). https://doi.org/10.1007/s00339-019-3020-z

    Article  CAS  Google Scholar 

  21. Y. Al-Hadeethi, M.I. Sayyed, Y.S. Rammah, Investigations of the physical, structural, optical and gamma-rays shielding features of B2O3–Bi2O3–ZnO–CaO glasses. Ceram. Int. 45, 20724–20732 (2019). https://doi.org/10.1016/j.ceramint.2019.07.056

    Article  CAS  Google Scholar 

  22. A. Magistris, G. Chiodelli, M. Villa, Lithium borophosphate vitreous electrolytes. J. Power Sources 14, 87–91 (1985). https://doi.org/10.1016/0378-7753(85)88016-2

    Article  CAS  Google Scholar 

  23. E.I. Kamitsos, M.A. Karakassides, Structural studies of binary and pseudo binary sodium borate glasses of high sodium content. Phys. Chem. Glasses 30, 229 (1989)

    CAS  Google Scholar 

  24. O. Cozar, I. Ardelean, I. Bratu, S. Siman, C. Craciun, L. David, C. Cafen, IR and EPR studies on some lithium-borate glasses with vanadium ions. J. Mol. Struct. 563–564, 421–425 (2001)

    Article  Google Scholar 

  25. C. Gejke, E. Zanghellini, J. Swenson, L. Börjess, Microscopic structure of tin-borate and tin-boratephosphate glasses. J. Power Sources 119–121, 576–580 (2003). https://doi.org/10.1016/S0378-7753(03)00290-8

    Article  CAS  Google Scholar 

  26. A.J. Parsons, L.D. Burling, C.A. Scotchford, G.S. Walker, C.D. Rudd, Properties of sodium-based ternary phosphate glasses produced from readily available phosphate salts. J. Non-Cryst. Solids 352, 5309–5317 (2006). https://doi.org/10.1016/j.jnoncrysol.2006.08.043

    Article  CAS  Google Scholar 

  27. P.Y. Shih, S.W. Yung, T.S. Chin, Thermal and corrosion behavior of P2O5–Na2O–CuO glasses. J. Non-Cryst. Solids 224, 143–152 (1998). https://doi.org/10.1016/S0022-3093(97)00460-2

    Article  CAS  Google Scholar 

  28. N. Sharmin, C.D. Rudd, Structure, thermal properties, dissolution behaviour and biomedical applications of phosphate glasses and fibres: a review. J. Mater. Sci. 52(15), 8733–8760 (2017). https://doi.org/10.1007/s10853-017-0784-4

    Article  CAS  Google Scholar 

  29. M.A. Villegas, J.F. Navarro, Physical and structural properties of glasses in the TeO2–TiO2–Nb2O5 system. J. Eur. Ceram. Soc. 27(7), 2715 (2007). https://doi.org/10.1016/j.jeurceramsoc.2006.12.003

    Article  CAS  Google Scholar 

  30. J. Allison, K. Amako, J. Apostolakis, H. Araujo, P.A. Dubois, M. Asai, G. Barrand, R. Capra, S. Chauvie, R. Chytracek, G.A.P. Cirrone, G. Cooperman, G. Cosmo, G. Cuttone, G.G. Daquino, M. Donszelmann, M. Dressel, G. Folger, F. Foppiano, J. Generowicz, V. Grichine, S. Guatelli, P. Gumplinger, A. Heikkinen, I. Hrivnacova, A. Howard, S. Incerti, V. Ivanchenko, T. Johnson, F. Jones, T. Koi, R. Kokoulin, M. Kossov, H. Kurashige, V. Lara, S. Larsson, F. Lei, F. Longo, M. Maire, A. Mantero, B. Mascialino, I. McLaren, P.M. Lorenzo, K. Minamimoto, K. Murakami, P. Nieminen, L. Pandola, S. Parlati, L. Peralta, J. Perl, A. Pfeiffer, M.G. Pia, A. Ribon, P. Rodrigues, G. Russo, S. Sadilov, G. Santin, T. Sasaki, D. Smith, N. Starkov, S. Tanaka, E. Tcherniaev, B. Tomé, A. Trindade, P. Truscott, L. Urban, M. Verderi, A. Walkden, J.P. Wellisch, D.C. Williams, D. Wright, H. Yoshida, M. Peirgentili, Geant4 developments and applications. IEEE Trans. Nucl. Sci. (2006). https://doi.org/10.1109/TNS.2006.869826

    Article  Google Scholar 

  31. L.S. Waters, G.W. McKinney, J.W. Durkee, M.L. Fensin, J.S. Hendricks, M.R. James, R.C. Johns, D.B. Pelowitz, The MCNPX Monte Carlo radiation transport code. AIP Conf. Proc. (2007). https://doi.org/10.1063/1.2720459

    Article  Google Scholar 

  32. G. Battistoni, F. Broggi, M. Brugger, M. Campanella, M. Carboni, A. Empl, A. Fassò, E. Gadioli, F. Cerutti, A. Ferrari, A. Ferrari, M. Lantz, A. Mairani, M. Margiotta, C. Morone, S. Muraro, K. Parodi, V. Patera, M. Pelliccioni, L. Pinsky, J. Ranft, S. Roesler, S. Rollet, P.R. Sala, M. Santana, L. Sarchiapone, M. Sioli, G. Smirnov, F. Sommerer, C. Theis, S. Trovati, R. Villari, H. Vincke, H. Vincke, V. Vlachoudis, J. Vollaire, N. Zapp, Applications of FLUKA Monte Carlo code for nuclear and accelerator physics. Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. With Mater. Atoms (2011). https://doi.org/10.1016/j.nimb.2011.04.028

    Article  Google Scholar 

  33. L. Gerward, N. Guilbert, K.B. Jensen, H. Levring, WinXCom - a program for calculating X-ray attenuation coefficients. Radiat. Phys. Chem. (2004). https://doi.org/10.1016/j.radphyschem.2004.04.040

    Article  Google Scholar 

  34. E. Şakar, Ö.F. Özpolat, B. Alım, M.I. Sayyed, M. Kurudirek, Phy-X/PSD: development of a user friendly online software for calculation of parameters relevant to radiation shielding and dosimetry. Radiat. Phys. Chem. (2020). https://doi.org/10.1016/j.radphyschem.2019.108496

    Article  Google Scholar 

  35. G. Lakshminarayana, M.G. Dong, M.S. Al-Buriahi, A. Kumar, D.-E. Lee, J. Yoon, T. Park, B2O3–Bi2O3–TeO2–BaO and TeO2–Bi2O3–BaO glass systems: a comparative assessment of gamma-ray and fast and thermal neutron attenuation aspects. J. Appl. Phys. A 126, 202–220 (2020). https://doi.org/10.1007/s00339-020-3372-4

    Article  CAS  Google Scholar 

  36. Y. Al-Hadeethi, M.I. Sayyed, O. Agard, Ionizing photons attenuation characterization of quaternary tellurite–zinc–niobium–gadolinium glasses using Phy-X/PSD software. J. Non-Cryst. Solids 538, 120044–120048 (2020). https://doi.org/10.1016/j.jnoncrysol.2020.120044

    Article  CAS  Google Scholar 

  37. A.S. Abouhaswa, M.S. Al-Buriahi, M. Chalermpon, Y.S. Rammah, Influence of ZrO2 on gamma shielding properties of lead borate glasses. Appl. Phys. A 126, 78–89 (2020). https://doi.org/10.1007/s00339-019-3264-7

    Article  CAS  Google Scholar 

  38. A. Aşkın, Assesment of the gamma and neutron shielding capabilities of the borotellurite glass quaternary containing heavy metal oxide using Geant4 and Phy-X/PSD database A. Ceram. Int. 46, 14090–14096 (2020). https://doi.org/10.1016/j.ceramint.2020.02.209

    Article  CAS  Google Scholar 

  39. Y. Al-Hadeethi, M.I. Sayyed, J. Kaewkhao, A. Askin, B.M. Rafah, E.M. Mkawi, R. Rajaramakrishna, Physical, structural, optical, and radiation shielding properties of B2O3–Gd2O3–Y2O3 glass system. Appl. Phys. A 125, 852–857 (2019). https://doi.org/10.1007/s00339-019-3115-6

    Article  CAS  Google Scholar 

  40. I. Kashif, H. Farouk, A.M. Sanad, S.A. Aly, Structural studies of some V2O5–P2O5–B2O3–Fe2O3 glass systems. J. Mater. Sci. 27, 122–126 (1992)

    Article  CAS  Google Scholar 

  41. E.I. Kamitsos, M.A. Karakassides, Structural studies of binary and pseudo binary sodium borate glasses of high sodium content. J. Phys. Chem. Glasses 30, 19–26 (1989)

    CAS  Google Scholar 

  42. S. Kumar, P. Vinatier, A. Levasseur, K.J. Rao, Investigations of structure and transport in lithium and silver borophosphate glasses. J. Solid State Chem. 177, 1723–1737 (2004). https://doi.org/10.1016/j.jssc.2003.12.034

    Article  CAS  Google Scholar 

  43. E.I. Kamitsos, A.P. Patsis, M.A. Karakassides, G.D. Chryssikos, Infrared reflectance spectra of lithium borate glasses. J. Non-Cryst. Solids 126, 52–67 (1990). https://doi.org/10.1016/0022-3093(90)91023-K

    Article  CAS  Google Scholar 

  44. O. Cozar, I. Ardelean, I. Bratu, S. Simom, C. Craciun, L. David, C. Cefan, IR and EPR studies on some lithium-borate glasses with vanadium ions. J. Mol. Struct. 563–564, 421–425 (2001). https://doi.org/10.1016/S0022-2860(01)00442-2

    Article  Google Scholar 

  45. P.S. Anantha, K. Hariharan, Structure and ionic transport studies of sodium borophosphate glassy system. Mater. Chem. Phys. 89, 428–437 (2005). https://doi.org/10.1016/j.matchemphys.2004.09.029

    Article  CAS  Google Scholar 

  46. J. Swenson, L. Börjesson, Intermediate-range structure and conductivity of fast ion-conducting borate glasses. J. Non-Crystal. Solids 232–234, 658–664 (1998). https://doi.org/10.1016/S0022-3093(98)00435-9

    Article  Google Scholar 

  47. A.H. Verhoef, H.W. Den-Hartog, Infrared spectroscopy of network and cation dynamics in binary and mixed alkali borate glasses. J. Non-Cryst. Solids 182, 221–234 (1995). https://doi.org/10.1016/0022-3093(94)00555-9

    Article  Google Scholar 

  48. R.D. Husung, M. Robert Doremus, The infrared transmission spectra of four silicate glasses before and after exposure to water. J. Mater. Res. 5(10), 2209–2217 (1990). https://doi.org/10.1557/JMR.1990.2209

    Article  CAS  Google Scholar 

  49. E.I. Kamitsos, M.A. Karakassides, G.D. Chryssikos, A vibrational study of lithium sulfate based fast ionlc conducting borate glasses. J. Phys. Chem. 90, 4528–4533 (1986). https://doi.org/10.1021/j100410a010

    Article  CAS  Google Scholar 

  50. N. Eissa, W. El-Meliegy, S. El Minyawi, N. Sheta, H. Sallam, Mossbauer effect, electron spin resonance, and electrical conductivity studies of the effect of iron on the magnetic and electrical properties of sodium silicate glass. J. Phys. Chem. Glasses 34, 31–34 (1993)

    CAS  Google Scholar 

  51. H.A. Saudi, H.M. Gomaa, M.I. Sayyed, I.V. Kityk, Investigation of bismuth silicate glass system modified by vanadium and copper cations for structural and gamma-ray shielding properties. J. SN Appl. Sci. 1, 218 (2019). https://doi.org/10.1007/s42452-019-0197-x

    Article  CAS  Google Scholar 

  52. M. Hossam, Gomaa, influence of Bi2O3 on the physical and electrical properties of some Boro-Iron glasses. J. Non-Crystal. Solids 481, 51–58 (2018). https://doi.org/10.1016/j.jnoncrysol.2017.10.012

    Article  CAS  Google Scholar 

  53. H.M. Gomaa, S.M.E.L. Katlawy, A new empirical method for estimating the refractive index of oxide glasses using internal structure information. Am. J. Mater. Synth. Process. 2(6), 94–96 (2017). https://doi.org/10.11648/j.ajmsp.20170206.14

    Article  Google Scholar 

  54. H.A. Saudi, H.M. Gomaa, The effect of Nb2O5 on fast neutron removal cross section, optical, and structural properties of some calcium borate oxide glasses containing Bi3+ ions. J Radiat. Detect. Technol. Methods (2019). https://doi.org/10.1007/s41605-018-0083-x

    Article  Google Scholar 

  55. M.Y. Hassaan, H.A. Saudi, H.M. Gomaa, A.S. Morsy, Optical properties of bismuth borate glasses doped with zinc and calcium oxides. J. Mater. Appl. 9(1), 46–54 (2020). https://doi.org/10.32732/jma.2020.9.1.46

    Article  Google Scholar 

  56. M.J. Berger and J.H. Hubbell, XCOM: Photon Cross Sections on a Personal Computer, United States: NBSIR (1987) 3597. https://doi.org/10.2172/6016002

  57. T. Kaura, J. Sharma, T. Singh, Review on scope of metallic alloys in gamma rays shield designing. J. Prog. Nucl. Energy 113, 95–113 (2019). https://doi.org/10.1016/j.pnucene.2019.01.016

    Article  CAS  Google Scholar 

  58. M.I. Sayyed, F. Laariedh, A. Kumr, M.S. Al-Buriahi, Experimental studies on the gamma photons-shielding competence of TeO2–PbO–BaO–Na2O–B2O3 glasses. J. Appl. Phys. A 126, 4 (2020). https://doi.org/10.1007/s00339-019-3182-8

    Article  CAS  Google Scholar 

  59. G. Lakshminarayana, M.G. Dong, A. Kumar, Y. Elmahroug, A. Wagh, D.-E. Lee, J. Yoon, T. Park, Assessment of gamma-rays and fast neutron beam attenuation features of Er2O3-doped B2O3–ZnO–Bi2O3 glasses using XCOM and simulation codes (MCNP5 and Geant4). Appl. Phys. A (2019). https://doi.org/10.1007/s00339-019-3099-2

    Article  Google Scholar 

  60. S.R. Manohara, S.M. Hanagodimath, K.S. Thind, L. Gerward, On the effective atomic number and electron density: a comprehensive set of formulas for all types of materials and energies above 1 keV. Nucl. Instrum. Methods Phys. Res. B 266, 3906–3912 (2008). https://doi.org/10.1016/j.nimb.2008.06.034

    Article  CAS  Google Scholar 

  61. M. Almatari, Gamma radiation shielding properties of glasses within the TeO2–TiO2–ZnO system. Radiochim. Acta 107, 1–6 (2019). https://doi.org/10.1515/ract-2018-3058

    Article  CAS  Google Scholar 

  62. S.R. Manohara, S.M. Hanagodimath, L. Gerward, Energy absorption buildup factors for thermoluminescent dosimetric materials and their tissue equivalence. Radiat. Phys. Chem. 79, 575–582 (2010). https://doi.org/10.1016/j.radphyschem.2010.01.002

    Article  CAS  Google Scholar 

  63. A.A. El-Maaref, K.H.S. Shaaban, M. Abdelawwad, Y.B. Saddeek, Optical characterizations and Judd-Ofelt analysis of Dy3+ doped borosilicate glasses. J. Opt. Mater. 72, 169–176 (2017). https://doi.org/10.1016/j.optmat.2017.05.062

    Article  CAS  Google Scholar 

Download references

Funding

The authors express their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work through research groups program under Grant Number R.G.P.2/61/40.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hosam M. Gomaa.

Ethics declarations

Conflict of interest

All the authors declare that there is no any conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gomaa, H.M., Zahran, H.Y. & Yahia, I.S. Influence of the structural matrix on the attenuation parameters of some iron-borophosphate glasses. J Mater Sci: Mater Electron 32, 21135–21154 (2021). https://doi.org/10.1007/s10854-021-06613-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-06613-y

Navigation